The Open Master Hearing Aid
(openMHA)

4.17.0

Matlab Coder integration

HorTech

KEompetenzzentrum flr
Hérgerdie-Systemtechnik

© 2005-2021 by H6rTech gGmbH, Marie-Curie-Str. 2, D—-26129 Oldenburg, Germany
© 2021-2022 by Hoérzentrum Oldenburg gGmbH, Marie-Curie-Str. 2, D—26129 Oldenburg, Germany

The Open Master Hearing Aid (openMHA) — Matlab Coder integration
Ho6rTech gGmbH

Marie-Curie-Str. 2
D—26129 Oldenburg

LICENSE AGREEMENT

This file is part of the HorTech Open Master Hearing Aid (openMHA)

Copyright © 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 HérTech gGmbH.
Copyright © 2017 2018 2019 2020 2021 H6rTech gGmbH.

Copyright © 2021 2022 Hbrzentrum Oldenburg gGmbH.

openMHA is free software: you can redistribute it and/or modify it under the terms of the GNU
Affero General Public License as published by the Free Software Foundation, version 3 of the
License.

openMHA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Affero General Public License, version 3 for more details.

You should have received a copy of the GNU Affero General Public License, version 3 along
with openMHA. If not, see <http://www.gnu.org/licenses/>.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

Contents

1 Introduction
2 The MATLAB Coder in a nutshell

3 Usage of the matlab_wrapper plugin

3.1 Writing code targeting the matlab_wrapper plugin
3.2 Userconfiguration. e
3.3 Statekeeping
3.4 Deployment
3.5 Example

4 Native compilation
41 Userconfiguration e

1 Introduction 1

1 Introduction

For many audiological researchers the tool of choice for prototyping new algorithms is MATLAB.
When the prototype reaches a certain stage of maturity there is oftentimes the desire to test
the new algorithm within the context of a quasi realistic real-time hearing aid processing and/or
under field conditions embedded in a mobile processing platform.

openMHA offers the researcher a powerful and flexible toolset capable of real-time audio pro-
cessing even on limited hardware, but it is written in C++. Porting an advanced signal process-
ing algorithm from MATLAB code to C++ can be a hassle and sometimes poses insurmount-
able due to limited manpower or institutional knowledge of C++.

This document describes how to integrate user MATLAB code into openMHA as a plugin via
translation to C/C++ by the MATLAB Coder.

Nomenclature

» user code refers to the MATLAB code the user wants to integrate into openMHA via
MATLAB Coder,

» user function means the entry point functions in the user code and their translated
forms,

+ generated code refers to the C/C++ source code the Coder generates from this code,
« user library refers to the shared library compiled from the generated code.

» Text written like this refers to names of variables or structs in source code and call ()
refers to functions. this.m means file names.

Prerequisites

In order to make use of this document the user needs a copy of openMHA, either in source
code or binary form, a MATLAB Coder license and a general understanding of the usage of
openMHA. In order to use the matlab_wrapper plugin the generated code needs to be compiled
either from within the MATLAB Coder or manually. See the MATLAB Coder documentation on
how to integrate a compiler into the Coder. The user should have some idea on how to answer
the following questions:

* What the purpose of a compiler?

+ What is the difference between source code and compiled code?
» What is a plugin in the openMHA context?

* What is a MATLAB struct?

For more information consult the openMHA application manual.

Document structure

There are two ways to integrate the generated code into openMHA as as plugin: The mat-
lab_wrapper plugin and the ‘native compilation’. The matlab_wrapper plugin is easier to use
but less flexible. The plugin is provided the name of the user library to the plugin. The plugin
then loads the user library and calls the user functions at the appropriate times. This approach
relies on the user code following a prescribed form described in section 3.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

2 CONTENTS

The ‘native compilation’ approach offers more flexibility but the user must be able to set up a
development environment able to compile openMHA from source, and know some C++ in order
to integrate the generated code into the provided source code. This approach is described in
section 4.

Which approach to use?

There is no hard and fast rule on which approach to use for a given algorithm. The following
guidelines can be used to figure out which approach probably fits best.
Usage of the matlab_wrapper plugin is recommended if:

» There is little or no institutional knowledge of C++

» The user code does hold no or only simple state, i.e. there is no or only simple data that
needs to be stored from one audio block processing to the next.

No or little configuration at runtime is needed

» The user code has a monolithic structure, i.e. it can be thought of as one big black box
where the signal goes in and output comes out

« Little or no interaction with the rest of openMHA is desired
On the other hand the native compilation approach should be used if:
+ Data sharing beyond the audio signal itself with openMHA is needed

» The algorithm structure itself is subject to change
» The user code is modular and the modularity needs to be preserved

« It is impossible to rewrite the user code to the prescribed structure for the wrapper plugin

Independent of the approach the integration will be easier if the code already fits the structure
described in 3.1. If it is known at the beginning that an integration into openMHA is desired
it can be advantageous to write the user code according to the described structure in the first
place.

2 The MATLAB Coder in a nutshell

This section only introduces the most important terms needed to understand this documenta-
tion. It can not replace the Matlab Coder documentation. Please consult the official Matlab
Coder manual for further information.

Introduction

The Matlab Coder generates C/C++ code from MATLAB code. This code can then be compiled
using the MATLAB compiler or any other compiler. The generated code can be integrated
into openMHA either in source code or in compiled form via the matlab_wrapper plugin. The
matlab_wrapper plugin can only accept compiled C code.

Entry-point functions

An entry-point function is a top-level MATLAB function that gets compiled to C/C++ code. Only
functions marked as entry-point functions are guaranteed to be generated as callable functions
visible from the outside of the user code. The matlab_wrapper plugin expects some entry-point
functions to be present, see subsection 3.1.

© 2005-2021 Ho6rTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

1

3 Usage of the matlab_wrapper plugin 3

Input types

Because C is statically typed, all input and output types must be known at compile time. Unlike
in MATLAB, input and output types become part of the function signature and can not be
changed later, including array dimensions. If a function needs to accept variable size arrays,
they need to be wrapped in a struct, done automatically at code generation.

The MATLAB Coder handles double, single, and half precision floating point numbers, 8-, 16-,
32-, and 64-bit sighed and unsigned integers, logicals (booleans), characters and structs, cell
arrays and strings. These can be either single values or matrices. The size of a matrix is
denoted by X x Y, X denoting the number of rows andY the number of columns. :X means ‘up
to X rows/columns’ and Inf means an indeterminate size. The type of input argument can
either be specified manually or defined by example. See the MATLAB Coder documentation
for details.

3 Usage of the matlab_wrapper plugin

The matlab_wrapper plugin is the easiest but most restricted way to integrate MATLAB code
into openMHA. To use it, the user compiles the user code into a shared library. The mat-
lab_wrapper plugin then takes the library name without suffix as configuration variable
library_name. The plugin then automatically resolves the entry-point functions and calls
them during the appropriate callback, passing signal dimensions and input signal to the user
code. Because the functions are resolved by name, the user code has to follow the form
described in 3.1 for the matlab_wrapper plugin to properly resolve them.

If configuration at run time is desired, the user_config struct can be used (see section 3.1
for details). The plugin parses the entries of user configuration and creates an openMHA con-
figuration variable for each entry. These variables can be changed during processing without
impeding real-time safety.

3.1 Writing code targeting the matlab_wrapper plugin
3.1.1 User code structure

The user code and the plugin interface via four entry point functions: init (), prepare (),
process (), and release (), of which process () is mandatory. These functions are auto-
matically called by the wrapper plugin at construction, and during the prepare (), process ()
and release () callbacks respectively. In order for the matlab_wrapper plugin to properly re-
solve these functions, they must confirm to the prescribed interface, i.e. their input and output
parameters must be exactly as described in the following.

init () is called when the user library is loaded. It must follow the form:

function [user_config,state] = init(user_config, state)

user_configisa 1xInf array of structs containing the following members:
name A 1xInf char array, the name of
value An InfxInf doubles array

state has the same type as user_config. If user defined configuration variables are de-
sired, user_config must be created within the init () function, e.g.:

function [user_config,state] = init(user_config, state)
user_config =...

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

IN

© ® N o o A @ N o=

- o

4 CONTENTS

[struct('name', 'writeable ', 'value',ones(1,1))];
end
The size of user_config may not be changed after the call to init (). If the values of

the elements of user_config need to be changed depending on the signal dimensions, this
can be done during the prepare call, where signal_dimensions and user_config are
available. The state variable is initialized in the same way and used to keep state data in
between calls to process ().

function [user_config,state] = init(user_config, state)
state = [struct('name', 'rmslevel', 'value',ones(1,1))];
end

prepare () is called when the prepare command is issued. All initialization that depends on
the form of the signal should be done here, furthermore the properties of the input signal can be
checked, i.e., in case the processing requires a fixed number of channels or a certain sampling
rate is required. If the processing changes any signal property, the appropriate member of
signal_dimensions must be changed accordingly to inform the openMHA framework of the
change. prepare () takes two arguments:

signal_dimensions is a struct with information about the input signal. If the processing
changes any of the following parameters, they must be changed in the prepare call ac-
cordingly:
channels A uint32 containing the number of channels in the signal.
domain A char containing either ‘W’ for waveform domain or ‘S’ for spectral domain.
fragsize A uint32 containing the fragment size.

wndlen A uint32 containing the window length of the FFT if in spectral domain, zero
otherwise

fftlen A uint32 containing the Length of the FFT in in spectral domain, zero otherwise.
srate A double containing the sampling frequency of the signal.

user_config as above.
state as above.

Example:

function [signal_dimensions, user_config, state]=...
prepare(signal_dimensions, user_config, state)
user_config (1).value(1,1)=2;

state (1).value=zeros(signal_dimensions.channels);

signal_dimensions.channels=1;
end

All signal processing has to happen in the process_xy () function. ‘xy’ takes different values
depending on the input and output signal domains. Use ‘ww’ for waveform to waveform pro-
cessing, ‘ss’ for spectrum to spectrum processing, ‘ws’ for waveform to spectrum, and ‘sw’ for
spectrum to waveform processing. The function has the following signature:

© 2005-2021 Ho6rTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

3.2 User configuration 5

function [s_out,user_config,state] = process_xy(s_in,...
signal_dimensions , ...
user_config , state)

The parameters signal_dimensions, user_config, and state are described above.
wave_in is @ InfxInf array of doubles or complex numbers in the case of spectral pro-
cessing.

The release function is used to do final cleanup if necessary. It takes no parameters and
returns nothing:

function release ()

end

3.2 User configuration

As mentioned before, user configuration must be initialized in the form of a vector of structs
inthe init () function. The elements of user_config may be changed during processing,
but changes to signal_dimensions are not allowed. For every element of user_config,
an openMHA configuration variable with the same name is created, allowing changes to the
user_configinareal-time safe way. A current limitation is that changes made to user_config
during process () are lost on configuration change from the parser side, so the state argu-
ment should be used to keep dynamic state like i.e. filter states.

3.3 State keeping

State keeping can be done in one of two ways. The quick option is to define the stateful variable
as persistent or global. This has the downside that the variables are shared between all
instances of the user library, making it unsafe to load the user library more than once at a time.
The upside is that these variables may have any type and may change their size at any time,
although changing their size may not be real-time safe.

Alternatively, the state input/output variable may be used as shown above in section 3.1.1.
It has the same type as the user_config variable and follows similar rules. All elements
of state must be initialized with name and initial value in init (). The size of the element
value may only be changed during init () and prepare (). During process () only the
elements of value may be changed, but not its size. Changing the size during process () is
not real-time safe and leads to a crash. openMHA parses the contents of state and makes
its elements available as monitor variables.

3.4 Deployment

In order to get a ready to use user library, the MATLAB Coder needs to be setup to use a
compiler. Please refer to the MATLAB Coder documentation for how to do this. If the user
library is compiled using a different compiler than openMHA there may be compatibility prob-
lems. If possible, use the MinGW compiler on Windows, the gcc compiler on Linux, and clang
on macOS. If the MATLAB Coder can not be setup to use a compatible compiler, the generated
code may need to be exported using the packNGo utility provided by the MATLAB Coder and
compiled manually. For compilation, the same setup as is used to compile openMHA can be
used. See COMPILATION.md for details.

In any case the user library (usually a shared library with the file ending . so, .dylib,0or .d11)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

N

© o N o o A~ W N =

6 CONTENTS

then needs to be copied to where openMHA looks for its plugins. By default these locations
are

* C:\\Program Files\openMHA\bin (Windows)
* /usr/local/lib/openmha (MacOS)

* /usr/1lib (Linux)

3.5 Example

This section describes step-by-step how to go from the empty template code in
examples/24-matlab-wrapper—-simple to a user library implementing a simple delay-
and-sum algorithm, where the delay and the gain are real-time configurable on a per-channel
basis. The finished code can be found in examples/25-matlab-wrapper—advanced.

Init

Let’s take a look at the contents of init.m. We know we want two configuration variables:
The delay and the gain, so we need a vector of two structs:

function [user_config, state] = init(user_config, state)
user_config =[struct('name’', 'delay', 'value',ones(1,1));

struct('name’', 'gain ', 'value ',ones(1,1))];
end

The first element of user_config is named delay, the second one is named gain. The
actual value of the configuration variable is stored in the value member. As we want one
entry per channel but do not yet know the number of input channels we just leave the initial
value a 1 x 1 matrix of ones. Note that because of the fixed interface, value must always be a
matrix of doubles, even if, as in this case, we only want to support integer values for the delay
configuration variable. state is not used in this example.

Prepare

The next function of interest is prepare (), found in prepare .m:

function [signal_dimensions, user_config, state] =

prepare (signal_dimensions, user_config, state)

if (signal_dimensions.domain~="W")

fprintf ('This plugin can only process signals in the time domain.
Got %s\n',signal_dimensions.domain); assert(false);

end

user_config(1).value=zeros(signal_dimensions.channels,1);

user_config(2).value=zeros(signal_dimensions.channels,1);

signal_dimensions.channels=uint32 (1);
end

© 2005-2021 Ho6rTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

© o N o o A W N =

© © N o o A w N o=

3.5 Example 7

The first thing we do in lines 3to 5 is to check signal_dimensions if the input signal we get

is really in the waveform domain and if not print an error message and quit. Next we need to
resize the delay and the gain to the appropriate sizes. Both are set to be vectors containing one
element per channel. The number of channels is available as signal_dimensions.channels.
As our user code changes the dimensions of the signal we need to announce this fact to the
openMHA framework. We do this by changing the channels member of signal_dimensions
to one. Note that in line 15 we need to explicitly cast the value to the appropriate type lest we
get errors during code generation. Also observe that the change to channels was the last
thing we did, as we needed the original value before!

process_ww, process_ss, process_sw and process_ws

In order to be able to use make.m for every combination of of input and output signal do-
main with minimal changes, we introduce process_ww, process_ss, process_ws, and
process_sw. These entry-point functions serve as proxy for the real processing processing
function and all contain the same code forwarding the call to the ‘real’ processing function:

function [s_out,user_config, state] = process_ss(s_in,...
signal_dimensions , ...
user_config , state)

[s_out,user_config]=process(s_in,signal_dimensions ,user_config);
end

This allows us to keep the code invoking the MATLAB mostly the same. More on that later.

Process

function [wave_out,user_config ,dummy] =
process (wave_in,signal_dimensions, user_config, dummy)

delay=user_config (1).value;
gain=user_config (2).value;

persistent state;
if (isempty(state))
state=zeros(signal_dimensions.fragsize+uint32 (max(delay (:))) ,...
signal_dimensions.channels);
end

persistent read_idx;
if (isempty(read_idx))

read_idx=uint32 (zeros(signal_dimensions.channels));
end

persistent write_idx;
if (isempty(write_idx))
write_idx=delay;

end

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

8 CONTENTS

for fr=1:signal_dimensions.fragsize
for ch=1:signal_dimensions.channels
write_idx (ch)=mod(write_idx (ch) ,...
(signal_dimensions . fragsize+delay(ch)))+1;
state (write_idx(ch),ch)=wave_in(fr ,ch);
end
end

wave_out=zeros(signal_dimensions.fragsize ,1);
for fr=1:signal_dimensions.fragsize
for ch=1:signal_dimensions.channels
read_idx (ch)=mod(read_idx(ch) ,...
(signal_dimensions . fragsize+delay(ch)))+1;
wave_out(fr)=wave_out(fr)+...
state (read_idx(ch),ch)+«10~(gain(ch)/10);
end
end
end

In lines 4 and 5 we define shorthand notations for delay and gain. This makes it easier to
follow the code. Next we define some helper variables. We implement the delay line as
a ringbuffer with the lag between read and write index appropriately chosen for the delay.
As we want to delay every channel independently we need to keep state for every chan-
nel. The state vector needs to be able to contain all incoming samples of a block in ad-
dition to the delayed samples from the past. Because we need to keep the state in be-
tween calls to process, we define the state matrix and the read and write indices as per-
sistent. Alternatively we could use entries in state to store them, as used in example 28
(examples/28-matlab-wrapper-spec2wave/). Next, we loop over the input signal to fill
our state vector, advancing the write pointer appropriately. In line 31 we initialize the output
signal to zero and then loop over the state vector, adding the delayed samples from different
channels together.

Release

The last function we can fill is release ():

function release ()
end

We do not need to do any cleanup, so we leave it empty.

Deployment

To generate the C code from our MATLAB code we can use make .m unchanged. Let’s take a
look:

function make(iodomain,varargin)

end

The make () function takes several arguments, of which the first, iodomain is mandatory.
iodomain determines the input and output domains of the generated code. It is a string and
must take one of the following values:

© 2005-2021 Ho6rTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

© ® N o o A W N o=

© o N o o A W N =

AWM =

3.5 Example 9

ww wave to wave

ss spectrum to spectrum

ws spectrum to wave

sw wave to spectrum

The optional parameters are

outputName (string) The name of the generated library

packOutput (logical) If the generated code should be packed in a self-contained zip file

In this example, we invoke the coder with

make ('ww', 'outputName ', 'example_25"', 'packOutput ', true);

At the beginning we initialize the coder configuration object to some sensible defaults:

cfg = coder.config('dll"', "ecoder', false);
cfg.GenerateReport = true;
cfg.ReportPotentialDifferences = false;
cfg.SaturateOnlintegerOverflow = false;
cfg.FilePartitionMethod = 'SingleFile"';
cfg.EnableOpenMP = false;
cfg.RuntimeChecks = true;
cfg.SupportNonFinite = false;
cfg.Hardwarelmplementation.ProdHWDeviceType =
"Generic—>32—bit x86 compatible ';
cfg.Hardwarelmplementation.ProdLongLongMode = true;
cfg.Hardwarelmplementation . TargetLongLongMode = true;

We define the target device, enable run-time checks, etc. A complete list can be found in
the MATLAB Coder documentation. Changing the settings should only be done after careful
consideration and never without reason.

The second section defines the types of the input arguments for init ():

ARGS = cell(4,1);

ARGS{1} = cell(1,1);

ARGS 1 1 = struct;

ARGS_1_1.name = coder.typeof('X"',[1 Inf],[0 1]);
ARGS_1_1.value = coder.typeof(0,[Inf Inf],[1 1]);
ARGS{1}{1} coder.typeof (ARGS_1_1,[Inf 1],[1 0]);
ARGS{1}{1} coder.cstructname (ARGS{1}{1}, 'user_config_t");
ARGS{1}{2} ARGS{1}{1};

Changing any of these required customization of the matlab_wrapper plugin. If such cus-
tomization seems necessary choosing the native compilation approach is recommended.
The last section actually invokes the MATLAB coder:

codegen('—config ',cfg,...
'—0',outputName, ...
"init','—args ' ,ARGS{1},...
"prepare’, '—args ' ,ARGS{2},...

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

o S w n -

© © N o o A W N o=

10 CONTENTS

process_name, '—args ' ,ARGS{args_idx},...
'release ');

The -config argument takes the configuration object we constructed earlier, —o takes the
output file name, which can be passed as argument, otherwise defaults to the name of the
first entry point function. The rest of the invocation defines the entry-point functions and their
argument types pairwise. process_name and args_idx are determined by iodomain. If
the generated code needs to be compiled by hand, we need to pass packOutput as true to
execute the last block in make .m:

if (packOutput)
buildinfo=load (['codegen/dIl/"' outputName '/buildlnfo.mat']);
packNGo(buildInfo . buildInfo , 'fileName ' ,[outputName '.zip']);
end

This makes the packNGo utility compress all source code needed to compile the plugin into
outputname.zip. We then can move the contents of the resulting zip file into a separate
directory and compile them using Makefile provided in the example directory. Note that this
also enables us to use the MATLAB Coder on one machine and deploy the generated code on
another machine where the Coder is not available.

The makefile needed to compile the example is relatively simple as far as makefiles go:

example_25.s0: example_25.0 example_25 emxAPl.o example_25_emxutil.o
$(CC) —shared —o $@ $*

In the first line we define the target library we want to compile and its dependencies: example_25.so

depends on example_25.0, example_25_emxAPI.o, and example_25_emxutil.o. The
Make program automatically provides the rule to how compile . o files from . c files. Here the
firstfile, example_25.c, contains the actual generated source code, example 25 _emxAPI.c
and example_25_emxutil.c contain utility code handling the structures the MATLAB coder
generates to handle variable size matrices and similar constructs.

This Makefile should be fairly universal and be usable for any system needing only small ad-
justments like e.g. the file suffix for shared libraries in and the actual name of the input and
output files. If needed the compiler flags can be customized further. See the documentation of
your compiler for details.

If, on the other hand, the MATLAB Coder was set up to use a compiler that produces open-
MHA compatible output we can just move the resulting user library, usually a shared library
with the file ending .so, .dylib, or .d11, to the appropriate directory, start openMHA,
point the matlab_wrapper plugin to the library and configure the user algorithm, like shown
in example_25.cfgq:

nchannels_in = 2
fragsize=128
srate 16000

iolib MHAIOFile
io.in = example_25.wav
io.out = out.wav

mhalib = matlab_wrapper
mha. library_name=example_25
cmd=prepare

mha. delay=[50 100]

© 2005-2021 Ho6rTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

4 Native compilation 11

13 [mha. gain=[-5 -5]

The first two sections are the usual setup routine for openMHA where signal parameters like
the number of input channels, the fragment size and the sampling rate are set up. We also
tell openMHA to use file-to-file processing for this example with example_25.wav as input
and out.wav as output, respectively Lines 9ff contain the actual configuration of the mat-
lab_wrapper plugin. We first tell openMHA to load the library named example_25, leaving
out the file suffix. We then need to issue the prepare command because we reset delay
and gain to default values in our prepare () function, overwritting all values we would assign
before the prepare call. Finally we set the delay to 50 and 100 samples respectively and the
gain to —5dB for both channels.

4 Native compilation

If the code can not be rewritten to fit the wrapper plugin restrictions or when only parts of the
algorithm shall be implemented in MATLAB the ‘Native compilation’ approach can be used.
Here the user takes a the source code of a skeleton openMHA plugin and writes their own
plugin, using the generated code only as building blocks, finally compiling the plugin as any
other self written openMHA plugin. This approach is much more flexible but requires more
interaction on part of the user. No step by step guide can be given, instead there are only
some guidelines and examples to observe.

4.1 User configuration

The native compilation does not provide a ready made way to pass configuration parameters
to the plugin. One way is to define the configuration as input arguments to the matlab function.
The user then has to manually add MHAParser::* configuration variables and translate them
to appropriate types and pass them to the generated code when calling the signal processing
functions. Please the examples/23-matlab—-coder for a beginner’s example. This example
can be adjusted for the end user’s needs.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2022 Hérzentrum Oldenburg gGmbH

	Introduction
	The MATLAB Coder in a nutshell
	Usage of the matlab_wrapper plugin
	Writing code targeting the matlab_wrapper plugin
	User configuration
	State keeping
	Deployment
	Example

	Native compilation
	User configuration

