The Open Master Hearing Aid
(openMHA)

4.18.0

Documentation of openMHA plugins

HorTech

Kompetenzzentrum fiir
Horgerate-Systemtechnik

© 2005-2021 by H6rTech gGmbH, Marie-Curie-Str. 2, D—-26129 Oldenburg, Germany
© 2021-2024 by Horzentrum Oldenburg gGmbH, Marie-Curie-Str. 2, D—26129 Oldenburg, Germany

The Open Master Hearing Aid (openMHA) — Documentation of openMHA plugins
Ho6rTech gGmbH

Marie-Curie-Str. 2
D—26129 Oldenburg

LICENSE AGREEMENT

This file is part of the H6rTech Open Master Hearing Aid (openMHA)

Copyright © 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 HorTech gGmbH.
Copyright © 2017 2018 2019 2020 2021 H6rTech gGmbH.

Copyright © 2021 2022 2023 2024 Hoérzentrum Oldenburg gGmbH.

openMHA is free software: you can redistribute it and/or modify it under the terms of the GNU
Affero General Public License as published by the Free Software Foundation, version 3 of the
License.

openMHA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Affero General Public License, version 3 for more details.

You should have received a copy of the GNU Affero General Public License, version 3 along
with openMHA. If not, see <http://www.gnu.org/licenses/>.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

Contents

1

Plugin category 'DNN-based’

1.1
1.2
1.3

bmiwf . .
gefsnet_bin . . L L e
gefsnet_mono L e e

Plugin category ’adaptive’

2.1

gsc_adaptive_stage

Plugin category ’beamforming’

3.1
3.2

delaysum_spec
rohBeam L

Plugin category ’ci-vocoder’

4.1
4.2
4.3
4.4
4.5
4.6

ci_auralization_ace e
Ci_auralization cis. e e
ci_simulation_ace
ci_simulation_cis e
get_rms . .o e e e e
Set rms e e e

Plugin category ’compression’

5.1
5.2
5.3

dC . .
de_simple e
softclip

Plugin category 'data-export’

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

ac2lsl . . .
AC20SC . . e e e e e e e e e e e e e e
ac2xdf . .

ACSAVE . . . i i e e e e
trigger2isl e e
wave2lsl . .. e e
WAVIEC .« v o v e e e e e e e e e e e e e

Plugin category ’data-flow’

71
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

AC2WAVE . . . o o e e e e e e e e e e e e e e e e e
acConcat_ wave e e
acPooling_wave
ac._mul . .. e e
AC PrOC .« v v v e e e e e e e e e e e e
combinechannels

dbasync e
delay e
fader_spec
fader wave. L e e
Matrixmixer e e
rOULE e e e
SAVE_SPEC .« v it e e e e e e e e e e e e e e e e

CONTENTS v

7.15
7.16
717

SAVE_WAVE it e e e e e e e e e e
shadowfilter_begin
shadowfilter end

8 Plugin category ‘data-import’

8.1
8.2
8.3
8.4
8.5

acSteer e
addsndfile
double2acvar e
ISl2acC e
0SC28C . . v v v e e e e e e e e e e e e

9 Plugin category ‘example’

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8

attenuate20
examplel . ..
example2 e
example3 . ..
exampled . .o
exampleS . ..
example6 L e
example7 . .o e

10 Plugin category 'feedback-suppression’

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

adaptive_feedback_canceller Lo L L
fshift
fshift_hilbert
PC . .
lpc_bl_predictor
lpc_burg-lattice
NIMS_Wave e e e e e e e e e
prediction_error e

11 Plugin category ’filter’

11.1
11.2
11.3
11.4
11.5
11.6

equalize L
fitfilter e
irfilter e
10770 0 1Y/
steerbf e
transducers e

12 Plugin category ’filterbank’

12.1
12.2
12.3
12.4
12.5
12.6

fittbpow
fitfilterbank
otfb_analyzer
gttb_simd
otfb_simple_bridge
multibandcompressor L

13 Plugin category ’io’

13.1
13.2
13.3
13.4
13.5

MHAIODuUmMmMY e e
MHAIOFile e
MHAIOJack e
MHAIOJackdb e
MHAIOParser e

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

Vi

CONTENTS

13.6 MHAIOPortAudio
13.7 MHAIOTCP
13.8 MHAIOalsa

14 Plugin category ’level-meter’

141 levelmeter
14.2 rmslevel

15 Plugin category ’level-modification’

151 gain.
15.2 level_matching.
15.3 smoothgains bridge

16 Plugin category ‘'math’

16.1 acTransform_wave

17 Plugin category 'noise-suppression’

17.1 noise_psd_estimator
17.2 smooth_cepstrum
17.3 windnoise

18 Plugin category ’plugin-arrangement’

18.1 altconfig
18.2 altplugs
18.3 analysispath
18.4 mhachain,
18.5 overlapadd L
186 resampling
187 split o

19 Plugin category ’signal-generator’

19.1 noise
19.2 plingploing
19.3 sine.

20 Plugin category ’signal-transformation’

20.1 downsample
20.2 SpPeCc2waveo e e
20.3 upsample
20.4 Wave2SpPeCo i e

21 Plugin category ’signalflow’

21.1 audiometerbackend

22 Plugin category ’spatial’

221 adm. e e
22.2 coherence oo
22.3 delaysum_wave
22.4 doasvm_classification.
22.5 doasvm_feature extraction.

23 Plugin category ’test-tool’

231 cpuload.

143

............... 143
............... 145
............... 147

151

............... 151
............... 152
............... 154
............... 156
............... 157
............... 161
............... 163

165

............... 165
............... 167
............... 168

170

............... 170
............... 171
............... 173
............... 175

177

............... 177

179

............... 179
............... 182
............... 184
............... 185
............... 187

188

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

CONTENTS vii

23.2 dropgen e e 189

23.3 droptect e 191

23.4 identity L e 192

23.5 matlab_wrapper 194

23.6 testplugin. e e e 195
24 Plugin category ’testing’ 197

241 complex_scale_channel 197

24.2 proc_CoUNter. o e e 198
25 All plugins tagged 'DNN-based’ 199
26 All plugins tagged ’'adaptive’ 199
27 All plugins tagged ’algorithm-communication’ 200
28 All plugins tagged ’audio-channels’ 200
29 All plugins tagged 'audiometer’ 201
30 All plugins tagged ‘beamforming’ 201
31 All plugins tagged ’binaural’ 201
32 All plugins tagged ’calibration’ 201
33 All plugins tagged ’ci-vocoder’ 201
34 All plugins tagged ’classifier’ 202
35 All plugins tagged ‘compression’ 202
36 All plugins tagged ’cross-fade’ 202
37 All plugins tagged ‘data-export’ 202
38 All plugins tagged ’data-flow’ 203
39 All plugins tagged ‘data-import’ 203
40 All plugins tagged ’dereverberation’ 204
41 All plugins tagged ‘directional’ 204
42 All plugins tagged ‘disk-files’ 204
43 All plugins tagged ’example’ 204
44 All plugins tagged ’feature-extraction’ 205
45 All plugins tagged 'feedback-suppression’ 205
46 All plugins tagged ‘filter’ 206
47 All plugins tagged ‘filterbank’ 206

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

viii

CONTENTS

48 All plugins tagged ’frequency-modification’
49 All plugins tagged ’generator’

50 All plugins tagged ’io’

51 All plugins tagged ’lab-streaming-layer’
52 All plugins tagged ’level-meter’

53 All plugins tagged ’level-modification’

54 All plugins tagged ’limiter’

55 All plugins tagged ’linear-algebra’

56 All plugins tagged ‘'math’

57 All plugins tagged ‘'multichannel’

58 All plugins tagged 'music’

59 All plugins tagged 'network-communication’
60 All plugins tagged ’'noise-suppression’
61 All plugins tagged 'open-sound-control’
62 All plugins tagged ’overlap-add’

63 All plugins tagged ’plugin-arrangement’
64 All plugins tagged ’signal-enhancement’
65 All plugins tagged ’signal-generator’

66 All plugins tagged ’signal-transformation’
67 All plugins tagged ’signalflow’

68 All plugins tagged ’signalhandling’

69 All plugins tagged ’spatial’

70 All plugins tagged ’test-tool’

71 All plugins tagged ’testing’

72 All plugins tagged ’unit-testing’

206
207
207
207
207
208
208
208
208
209
209
209
209
209
210
210
210
210
211
211
211
211
212
212

212

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

1 Plugin category 'DNN-based’ 1

1 Plugin category 'DNN-based’

1.1 bmfwf

This plugin implements a deep neural network based multi-frame Wiener filter

1.1.1 Detailed description

Implements a deep neural network (DNN)-based multi-frame Wiener filter (MFWF).

The provided DNN model (examples/34-DNN-bases-speech-enhancement/model_bmfwf.pt) is
trained to extract a single target speaker from a frontal cone within +10°.

The DNN architecture is based on Wang et al., “Neural Speech Enhancement with Very Low
Algorithmic Latency and Complexity via Integrated full- and sub-band Modeling”, in Proc. IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2023. It was
modified to decrease computational complexity.

The MFWF implementation is similar to Wang et al., “TF-GridNet: Integrating Full- and Sub-
Band Modeling for Speech Separation”, in IEEE/ACM Transactions on Audio, Speech, and
Language Processing, vol. 31, 2023, Eq. (14). It was modified for online processing using
recursive smoothing.

This plugin processes short time fourier transform signal in four audio channels with audio
sampling rate 16kHz, FFT length 128, Hanning window length 64 and hop size 32 sam-
ples. Limiting the number of threads can be beneficial for runtime performance, e.g., using
OMP_NUM_THREADS=1.

1.1.2 Supported domains

The MHA plugin bmfwf supports these signal domains:

* spectrum to spectrum

1.1.3 Plugin Tags

DNN-based spatial filter

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

CONTENTS

1.1.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
model_file string | Path to the model file exported using | model.pt
torchscript
prepared int State of this plugin: 0 = unprepared, 1 | (monitor)
= prepared
scaling_factor | float The scaling factor that is applied to the | 1
input of the model to account for differ-
ent scaling of MHA and PyTorch STFT.
unscaling_ratio | float The ratio between the time domain vol- | 1
ume before and after processing.
mix_back float The fraction of the noisy signal to be | 0.02
mixed back into the output.
calib_factor float The factor in dB to be applied to the | 0.3
output frame (within the Torchscript
model)
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize int

Fragment size of waveform data

()
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

1.2 gcfsnet_bin

This plugin executes the binaural GCFSnet speech enhancement model.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

1.2 gcfsnet_bin

1.2.1 Detailed description

This plugin implements the binaural GCFSnet, a deep speech-enhancement model built for
low-latency and low-complexity speech enhancenment in hearing aids.For more information,

see the preprint: https://arxiv.org/abs/2405.01967

The model was trained with Keras and the weights were exported to file rnn_data.c in the
plugin’s source code directory. The binaural GCFSnet uses all input channels as features while

only using the ipsilateral channels for filtering.

This plugin processes short time fourier transform signal in four audio channels with audio
sampling rate 16kHz, FFT length 128, Hanning window length 64 and hop size 32 samples.

1.2.2 Supported domains

The MHA plugin gcfsnet_bin supports these signal domains:

* spectrum to spectrum

1.2.3 Plugin Tags

DNN-based spatial filter

1.2.4 Configuration variables

= prepared

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
prepared int State of this plugin: 0 = unprepared, 1 | (monitor)

remix_factor

float Attenuation factor applied to the origi- | 0

nal signal for remixing

calib_factor float Gain applied to algo output. 0
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

4 CONTENTS

1.3 gcfsnet_mono

This plugin executes the monaural GCFSnet speech enhancement model.

1.3.1 Detailed description

This plugin implements the monaural GCFSnet, a deep speech-enhancement model built for
low-latency and low-complexity speech enhancenment in hearing aids.For more information,
see the preprint: https://arxiv.org/abs/2405.01967

The model was trained with Keras and the weights were exported to file rnn_data.c in the
plugin’s source code directory. The monaural GCFSnet only uses the ipsilateral input channels
as features and for filtering.

This plugin processes short time fourier transform signal in four audio channels with audio
sampling rate 16kHz, FFT length 128, Hanning window length 64 and hop size 32 samples.

1.3.2 Supported domains

The MHA plugin gcfsnet_mono supports these signal domains:

- spectrum to spectrum

1.3.3 Plugin Tags

DNN-based spatial filter

1.3.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
remix_factor float Attenuation factor applied to the origi- | 0

nal signal for remixing
calib_factor float Gain applied to algorithm output. 0
prepared int State of this plugin: 0 = unprepared, 1 | (monitor)

= prepared

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

2 Plugin category ’adaptive’ 5

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)

2 Plugin category ’adaptive’

2.1 gsc_adaptive_stage

Frequency-domain block-adaptive filter specialised for usage as gsc adaptive stage

2.1.1 Detailed description

Implements the FIR-filter block-adaptation scheme based on the NLMS optimization found in
John J. Shynk, Frequency-Domain and Multirate Adaptive Filtering, IEEE Signal Processing
Magazine, 1992, with specialisations to be used as the adaptive filter stage of an adaptive
MVDR beamformer as described in Baumgaertel, et al. 2015. Comparing Binaural Pre-
processing Strategies I: Instrumental Evaluation. Trends in hearing, 19, 2331216515617916.

2.1.2 Supported domains
The MHA plugin gsc_adaptive_stage supports these signal domains:

» waveform to waveform

2.1.3 Plugin Tags

adaptive filter

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

6 CONTENTS

2.1.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
lenOldSamps int how many old samples to buffer 1024
Range: [0,5000]
doCircularComp | bool whether to compensate for circular | no
convolution
mu float step size for gradient computation 0.2
Range: [0,2]
alp float autoregressive coefficient for estimat- | 0.5
ing PSD
Range: [0,1]
useVAD bool whether to use the VAD given in AC- | no
variable
vadName string | Name of VAD AC-variable VAD

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)

3 Plugin category ’heamforming’

3.1 delaysum_spec

simple delay and sum with single channel output

3.1.1 Detailed description

This plugin allows to delay and sum multiple input channels using individual delays and weights.
After each channel is delayed it is multiplied with the given weight and then added to the single
output channel.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

3.2 rohBeam 7
3.1.2 Supported domains
The MHA plugin delaysum_spec supports these signal domains:
* spectrum to spectrum
3.1.3 Plugin Tags
beamforming directional multichannel
3.1.4 Configuration variables
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
groupdelay vector<float> | Group delay in seconds. Positive val- | [0 0]
ues represent a delay. One entry for
each audio channel
gain vector<float> | weights of channels. Each entry is mul- | [1 1]

tiplied to its respective channel. Needs
one entry per channel.

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
3.2 rohBeam

Rohdenburg binaural beamformer

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

8 CONTENTS

3.2.1 Detailed description

Implements the binaural beamformer found in the PhD thesis of Thomas Rohdenburg. Please
see Chpt. 4,"Multi-Channel Noise Reduction Schemes with Binaural Output- Performance Eval-
uation and Optimization" for an overview.

Rohdenburg’s strategy is to use standard mono beamforming techniques, but to use the mono
output to estimate a linear time-varying filter that approximately equalizes PSD of the refer-
ence input channels to the beamformer output. This beamformer is implemented as a spectral
domain plugin in MHA. This algorithm has three main parts:

1. Fixed monoaural superdirectional beamformer based on Minimum Variance Distortionless
Response (MVDR). This uses three ingredients to determine the fixed filter spectrum in each
input channels:

a. Azimuth angle of the speech source relative to the listener.

b. Propogation vector that models the transfer function from source to each mic. There are two
options, head model HM1, or loading a HRTF from a WAV file.

c. Noise cross-correlation matrix, allows superdirectivity.

d. To avoid overamplification of noise in MVDR, you can either use a fixed diagonal loading
constant or an iterative per-frequency WNG limited algorithm to choose the loading constants.

2. Adaptive Generalized Sidechain (GSC) adaptive beamformer.

This step estimates cross-correlations of output of (1) with inputs,using a blocking strategy to
distinguish signal from noise. This component probably doesn’t work as expected and might
be dangerous; please disable this unless you really know what you are doing.

3. Binaural output adaptation:

a. The preferred strategy, Binaural Postfilter, estimates PSD of mono beamformed output and
reference LR channels, then chooses and applies an equalizing filter that splits the difference
between LR channels.

b. One of the other strategies, phase reconstruction, is implemented for comparison.

c. ltis also an option to simply output the monaural beamformer output.

d. The third strategy, bilateral beamforming is not supported, but can be easily implemented by
configuring two rohBeams.

Plausible features not implemented (but could be added) are:

a. Free Field for propogation vector. However you could do this by rendering your own arbitrary
HRTF and loading it via the "sampled" option for the propogation vector.

b. Null directions for the MVDR recipe.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

3.2 rohBeam

3.2.2 Supported domains

The MHA plugin rohBeam supports these signal domains:

- spectrum to spectrum

3.2.3 Plugin Tags

beamforming binaural

3.2.4 Configuration variables

Range: [0,100]

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
prop_type keyword_list Propogation vector type. hm1
Range: [hm1 sampled]
sampled_hrir_path string Path for a sampled hrir for the propoga-
tion vector.
source_azimuth_degrees float Azimuth angle for the speech source. 0
Range: [-180,180]
mic_azimuth_degrees_vec vector<float> | Azimuth angle for each mic, as vector. | [0 0000 0]
Range: [-180,180]
head_model_sphere_radius_cm | float Radius size of head model in meter 8.2

intermic_distance_cm matrix<float>

Intermic distances in cm
Range: [0,100]

00000000000 C

with blocked noise cross-PSD.
Range: [1,5000]

noise_field_model keyword_list Noise field model uncorr
Range: [uncorr diff2D diff3D intHRTF]

enable_adaptive_beam bool Whether adaptive beamformer is ac- | no
tive.

binaural_type keyword_list Binaural adaptation type bin_pf
Range: [mono bin_pr bin_pf]

diag_loading_mu float Diagonal loading constant mu for de- | 0.1
sign of fixed beamformer.
Range: [0,2]

enable_export bool Whether filter design is exported as AC | no
variables.

enable_wng_optimization bool Whether beamform design uses white | no
noise gain optimization.

tau_postfilter_ms float Smoothing time constant for postfilter | 100
in milliseconds.
Range: [1,5000]

tau_blocking_XkXi_ms float Time constant for estimation of noise | 30
cross-PSD in blocked signal.
Range: [1,5000]

tau_blocking_XkY_ms float Time constant for estimation of filtered | 30

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

10

CONTENTS

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

4 Plugin category ‘ci-vocoder’

4.1 ci_auralization_ace

Cl auralization (ACE)

41.1 Detailed description

This plugin generates an auralized audio signal from the specified AC variable, using a stimula-
tion strategy similar to a typical ACE (advanced combination encoder, n-of-m) coding strategy
with 22 channels. It operates in the time domain.

4.1.2 Supported domains

The MHA plugin ci_auralization_ace supports these signal domains:

» waveform to waveform

4.1.3 Plugin Tags

ci-vocoder

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

4.1

ci_auralization_ace

11

4.1.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
ac_name string Name of the AC variable containing the
electrodogram (cannot be changed at
runtime)
compression_coefficient | float Compression coefficient of the loud- | 416.2
ness growth function
Range: 10,[
base_level float Base level of the input (acoustic) dy- | 0.00035566
namic range / Pa
Range: [0,]
saturation_level float Saturation level of the input (acoustic) | 0.035566
dynamic range / Pa
Range: [0,
threshold_level vector<float> | Threshold level of the output (electric) | [96]
dynamic range for each electrode / CU
(same level for all electrodes if only one
value is specified)
Range: [0,255]
comfort_level vector<float> | Comfort level of the output (electric) | [160]
dynamic range for each electrode / CU
(same level for all electrodes if only one
value is specified)
Range: [0,255]
electrode_distance float Distance of the electrodes / m 0.00071429
Range: 10,[
lambda float Length constant of exponential spread | 0.0031021
of excitation / m
Range: [0,]
phase_duration float Duration of one phase of a biphasic | 2.5e-05
pulse /s
Range: 10,
interphase_gap float Duration of the gap between the | 8e-06
phases of a biphasic pulse / s
Range: [0,
phase_order keyword_list Order of the phases of a biphasic pulse | cathodic_first
Range: [cathodic_first anodic_first]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

4.2 ci_auralization_cis

Cl auralization (CIS)

4.2.1 Detailed description

12 CONTENTS
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

This plugin generates an auralized audio signal from the specified AC variable, using a stim-
ulation strategy similar to a typical CIS (continuous interleaved sampling) coding strategy with
12 channels. It operates in the time domain.

4.2.2 Supported domains

The MHA plugin ci_auralization_cis supports these signal domains:

« waveform to waveform

4.2.3 Plugin Tags

ci-vocoder

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

4.2 ci_auralization_cis

13

4.2.4 Configuration variables

Range: [cathodic_first anodic_first]

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
ac_name string Name of the AC variable containing the
electrodogram (cannot be changed at
runtime)
compression_coefficient float Compression coefficient of the loud- | 500
ness growth function
Range: [0,]
base_level float Base level of the input (acoustic) dy- | 0.00035566
namic range / Pa
Range: [0,]
saturation_level float Saturation level of the input (acoustic) | 2
dynamic range / Pa
Range: [0,
threshold_level vector<float> | Threshold level of the output (electric) | [60]
dynamic range for each electrode / cu
(same level for all electrodes if only one
value is specified)
Range: [0,1200]
maximum_comfortable_level | vector<float> | Maximum comfortable level of the out- | [600]
put (electric) dynamic range for each
electrode / cu (same level for all elec-
trodes if only one value is specified)
Range: [0,1200]
electrode_distance float Distance of the electrodes / m 0.0024
Range: 10,[
lambda float Length constant of exponential spread | 0.0031021
of excitation / m
Range: [0,]
phase_duration float Duration of one phase of a biphasic | 3e-05
pulse /s
Range: 10,
interphase_gap float Duration of the gap between the | 2.1e-06
phases of a biphasic pulse / s
Range: [0,
phase_order keyword_list Order of the phases of a biphasic pulse | cathodic_first

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

14

CONTENTS

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

4.3 ci_simulation_ace

Cl simulation (ACE)

4.3.1 Detailed description

This plugin generates an electrodogram from an audio signal, using a stimulation strategy simi-
lar to a typical ACE (advanced combination encoder, n-of-m) coding strategy with 22 channels.

It operates in the spectral domain.

4.3.2 Supported domains

The MHA plugin ci_simulation_ace supports these signal domains:

* spectrum to spectrum

4.3.3 Plugin Tags

ci-vocoder

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

4.3 ci_simulation_ace

15

4.3.4 Configuration variables

order (only has an effect with random
stimulation order)
Range: [1,]

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
n_electrodes int Number of active electrodes (cannot | 8
be changed at runtime)
Range: [1,]
compression_coefficient | float Compression coefficient of the loud- | 416.2
ness growth function
Range: 10,[
base_level float Base level of the input (acoustic) dy- | 0.00035566
namic range / Pa
Range: [0,]
saturation_level float Saturation level of the input (acoustic) | 0.035566
dynamic range / Pa
Range: [0,]
threshold_level vector<float> | Threshold level of the output (electric) | [96]
dynamic range for each electrode / CU
(same level for all electrodes if only one
value is specified)
Range: [0,255]
comfort_level vector<float> | Comfort level of the output (electric) | [160]
dynamic range for each electrode / CU
(same level for all electrodes if only one
value is specified)
Range: [0,255]
disabled_electrodes vector<int> Indices of any disabled electrodes (0 = | []
most apical, 21 = most basal)
Range: [0,21]
stimulation_order keyword_list Electrode stimulation order random
Range: [random base_to apex
apex_to_base]
randomization_seed int Seed for randomization of stimulation | 1

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

16 CONTENTS

4.4 ci_simulation_cis

Cl simulation (CIS)

4.4.1 Detailed description

This plugin generates an electrodogram from an audio signal, using a stimulation strategy sim-
ilar to a typical CIS (continuous interleaved sampling) coding strategy with 12 channels. It
operates in the time domain.

4.4.2 Supported domains

The MHA plugin ci_simulation_cis supports these signal domains:

« waveform to waveform

4.4.3 Plugin Tags

ci-vocoder

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

4.4 ci_simulation_cis

17

4.4.4 Configuration variables

bands
Range:]0,1]

Name Type Description Default

mhaconfig_in parser Input configuration (see below)

mhaconfig_out parser Output configuration (see below)

weights vector<float> | Weights for the analysis filterbank | [1 0.75207 0.56921 0.43181

compression_coefficient

float

Compression coefficient of the loud-
ness growth function
Range: [0,]

500

base_level

float

Base level of the input (acoustic) dy-
namic range / Pa
Range: [0,]

0.00035566

saturation_level

float

Saturation level of the input (acoustic)
dynamic range / Pa
Range: [0,]

threshold_level

vector<float>

Threshold level of the output (electric)
dynamic range for each electrode / cu
(same level for all electrodes if only one
value is specified)

Range: [0,1200]

[60]

maximum_comfortable |evel

vector<float>

Maximum comfortable level of the out-
put (electric) dynamic range for each
electrode / cu (same level for all elec-
trodes if only one value is specified)
Range: [0,1200]

[600]

disabled_electrodes

vector<int>

Indices of any disabled electrodes (0 =
most apical, 11 = most basal)
Range: [0,11]

stimulation_order

keyword_list

Electrode stimulation order
Range: [random base_to_apex
apex_to_base]

random

randomization_seed

int

Seed for randomization of stimulation
order (only has an effect with random
stimulation order)

Range: [1,[

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

18 CONTENTS

45 get_rms

Get RMS

4.5.1 Detailed description

This plugin computes the exponentially averaged RMS of the channels of an input signal and
stores it in an AC variable. It operates in the time domain.

4.5.2 Supported domains

The MHA plugin get_rms supports these signal domains:

» waveform to waveform

4.5.3 Plugin Tags

ci-vocoder

4,54 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
tau float Time constant for the exponential aver- | 1

age / s (must be greater than or equal
to fragsize/srate; if equal, no averaging
is performed, i.e. alpha = 1)

Range: 10,[

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

4.6 set rms 19

4.6 set rms

Set RMS

4.6.1 Detailed description

This plugin sets the channels of an output signal (e.g. of some signal processing operation) to
the RMS values of the original input signal. First, the output signal RMS is normalized; then, it
is set to the RMS of the original input signal. It operates in the time domain.

4.6.2 Supported domains

The MHA plugin set_rms supports these signal domains:

» waveform to waveform

4.6.3 Plugin Tags

ci-vocoder

4.6.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
ac_name_in string | Name of the AC variable containing the

(exponentially averaged) RMS of the
original input signal to be applied to
the output signal (cannot be changed
at runtime)

ac_name_out | string | Name of the AC variable containing
the (exponentially averaged) RMS of
the output signal used for normaliza-
tion (cannot be changed at runtime)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

20

CONTENTS

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

5 Plugin category ‘compression’

5.1 dc

dynamic compression

5.1.1 Detailed description

100 ‘///

80|

50 | //

40 |

Qutput level / dB SPL
~

207

0L
0 20 40 B0
Input level / dB SPL

[Example gain function
Identit;

80 100

Figure 1 Input-output function of one channel in the dc dynamic compression

algorithm.

The plugin dc is a multiband dynamic range compression plugin. One compression function
(input-output function) is applied to each audio channel. Frequency-dependent compression
can be achieved by using the fftfilterbank plugin in conjunction with this plugin, which separates
broadband audio channels into multiple frequency bands.

The input-level dependent gain function is configured by a gain table containing the gain values
in dB applied in different channels and frequency bands. When a gain table is read by the dc
plugin the gains contained in the gain table are converted from dB gains to linear factors. The
variable 1og_interp controls if the gain values are interpolated linearly or logarithmically, the
default is linear interpolation. For input levels outside of the range covered by the gain table an
extrapolation depending on the variable 1og_interp on the two nearest points is used.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

5.1 dc 21

The linear interpolation of gains originally given in dB can have undesired interpolation effects
especially for large step sizes gtstep. For step sizes gtstep significantly larger than 1dB,
these undesired interpolation effects should be avoided by switching 1og_interp. We provide
the mfile tool dc_plot_io.m which can be used to plot the resulting input/output characteristic
resulting from a dc gain table configuration with Octave/Matlab, refer to the inline help in that
mfile.

The following configuration fragment e.g. reproduces the 1/O characteristic shown in Fig. 1. To
keep the example readable, a gtstep size of 4 dB was used, reducing the amount of numbers
to give here and avoiding fractional dB gains. An actual configuration should use a step size
of 1 dB and not avoid fractions. The fitting GUI can be used to configure the dc plugins, and it
uses a 1 dB step size. Refer to the fitting GUI manual openMHA_gui_manual.pdf.

algos = [fftfilterbank dc combinechannels]

fftfilterbank.ftype = center

fftfilterbank.f = [200 2000]

fftfilterbank.ovltype = rect

dc.gtmin=[16 16]

dc.gtstep=[4 4]

dc.gtdata = [[37 40 39 38 37 36 35 34 33 32 31 30 26 22 18 14 10 6 2 =2 =21; ...
[37 40 39 38 37 36 35 34 33 32 31 30 26 22 18 14 10 6 2 -2 -2]1;1

dc.tau_attack = [0.005 0.005]

dc.tau_decay = [0.060 0.060]

dc.combinechannels.name = fftfilterbank_channels

In this configuration it is assumed that one audio channel is configured. All variables of dc have
two entries, one for each frequency band. This configuration applies 40 dB gain at 20 dB SPL
input level, and 30 dB at 60 dB input level. Above 60 dB input level, it limits the output level
to 90 dB SPL until the output level is softer than the input level. At low input levels below 20
dB SPL, it applies a noise gate. This example configuration is not a fitting recommendation.
Established fitting rules should be used to derive individual fittings for test subjects depending
on the individual hearing impairment.

dc allows to specify band-specific input level adjustments that are applied to the measured input
levels in the respective bands through the configuration variable level_ offset. Using this
variable, it is e.g. possible to compute the gain table in LTASS levels rather than physical band
levels.

The input level (abscissa of the input-output function, cf. Fig. 1) is determined by an attack- and
release-filter of the short time RMS level Ly, given in dB (SPL). The attack filter L, is a first
order low pass filter. The release filter L;, is a maximum tracker, i.e.

Lo = (20logio(Lst))r, e (1)
Lin = max(Lg, (Lg)) (2)

The gain table is given as a matrix with n - n., rows, where ny is the number of frequency
bands and n, is the number of channels. The order of row indices is 0...ny...ny - ne,. The
x-values for the n-th column of the gain table are given as x,, = gtmin + gtstep - n.

Trelease

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

http://www.openmha.org/docs/openMHA_gui_manual.pdf

22 CONTENTS

5.1.2 Supported domains

The MHA plugin dc supports these signal domains:

» waveform to waveform

* spectrum to spectrum

5.1.3 Plugin Tags

compression level-modification

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

5.1 dc 23
5.1.4 Configuration variables
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
gtmin vector<float> | a vector containing one entry for each | []
channel/band which is the input sound
level in dB SPL for which first gain in
the corresponding row of gain table gt-
data is applied to amplify the signal
gtstep vector<float> | input sound level difference in dB be- | []
tween table columns in the corre-
sponding row of gain table gtdata. I.e.
the first entry in each gtdata row is
applied when input level is gtmin dB,
the second entry is applied when input
level is gtmin+gtstep dB, etc. A small
step size (e.g. 1 dB) is recommended
to avoid undesired effects of the linear
interpolation
gtdata matrix<float> | gaintable data with gains in dB. Each | [[]]
row in this matrix contains gains for
one channel or band. Internally, the dB
gains of this table are converted to lin-
ear gain factors, and interpolated and
extrapolated linearly between mesh
points.
tau_rmslev vector<float> | RMS level averaging time constantins | []
tau_attack vector<float> | attack time constantin s 1
tau_decay vector<float> | decay time constantin s 1
level_offset vector<float> | level offset for each band in dB. If this | []
vector is non-empty, the computed in-
put level are adjusted by the offset val-
ues in this vector before the gains are
looked up in the gaintable.
fb string Name of fftfilterbank plugin. Used to | fftfilterbank
extract frequency information.
chname string name of audio channel number vari-
able (empty: broadband)
bypass bool bypass dynamic compression no
log_interp bool use logarithmic interpolation of | no
gaintable entries
clientid string Client ID of last fit
gainrule string Gain rule of last fit
preset string Preset name of last fit
level in vector<float> | input level of last block / dB SPL (monitor)
level in filtered | vector<float> | input level of last block after time- | (monitor)
constant filters / dB SPL
cf vector<float> | nominal center frequencies of filter- | (monitor)
bank bands
ef vector<float> | edge frequencies of filterbank bands (monitor)
band_weights vector<float> | Weights of the individual frequency | (monitor)
bands. Computed as (sum of squared
fft-bin-weigths) / num_frames.

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

24 CONTENTS

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)
5.2 dc_simple

Simple dynamic compression scheme

5.2.1 Detailed description

The plugin dc_simple is a multiband dynamic compression. One compression function (input-
output function) is applied to each audio channel; multiple frequency bands can be used via
the fftfilterbank plugin. The level dependent gain function is determined by the gains at 50 and
80 dB (G50 and G80). To reduce noise, an expansion is applied below a noise gate level. See
also Fig. 2.

If spectral processing is used, the input level (z-axis of the input-output function) is determined
by an attack- and release-filter of the short time RMS level L, given in dB (SPL)The attack filter
is a first order low pass filter. The release filter is a maximum tracker, i.e.

Lo = <2010g10(Lst)>Taka (3)
Ly, = max(Lg,(Lg)) (4)

The input level is divided into three sections. In each section the input level L;, is transformed
linearly into a gain G on a log-log scale: Gy = (m — 1)L;, + n, where m is the slope of the
input-output function, and n is an offset. Between expansion threshold and limiter threshold, m
and n are given by the gain at 50 and 80 dB. In the section below the expansion threshold, m
is the expansion slope, and above the limiter threshold, m is zero. n is chosen to result in a
continuous input-output function.

Trelease

All variables are vectors with one entry for each input channel (hnumber of audio channels times
number of frequency bands).

An example configuration of a chain with dynamic compression could be:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

5.2 dc_simple 25

MPO ettt ettt

g G50

E 50 bt

— "-‘1:5

noisei gate S‘O SiO
L1, /dB

Figure 2 Input-output function of one channel in the dc_simple dynamic compression
algorithm.
algos = [fftfilterbank dc_simple combinechannels]

fftfilterbank.ftype = center
fftfilterbank.f = [250 1000 4000]
fftfilterbank.ovltype = rect
fftfilterbank.fscale = bark

dc_simple.g50 = [10 25 40 11 31 55]

dc_simple.g80 = [5 15 10 5 21 19]
dc_simple.expansion_threshold = [20 20 20 20 20 20]
dc_simple.expansion_slope = [4 4 4 4 4 4]
dc_simple.limiter_threshold = [120 120 120 120 120 120]
dc_simple.tau_attack = [0.005 0.005 0.005 0.005 0.005 0.005]
dc_simple.tau_decay = [0.015 0.015 0.015 0.015 0.015 0.015]
combinechannels.name = fftfilterbank_channels

In this configuration it is assumed that two audio channels are configured, i.e. all variables of
dc_simple have three entries for the first audio channel and three for the second audio channel.

5.2.2 Supported domains

The MHA plugin dc_simple supports these signal domains:

» waveform to waveform

* spectrum to spectrum

5.2.3 Plugin Tags

compression level-modification

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

26

CONTENTS

5.2.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
g50 vector<float> | Gain in dB at 50 dB input level [0]
Range: [-80,80]
080 vector<float> | Gain in dB at 80 dB input level [0]
Range: [-80,80]
maxgain vector<float> | Maximal amplification in dB [80]
expansion_threshold | vector<float> | expansion threshold in dB [0]
expansion_slope vector<float> | expansion slope of input-output func- | [1]
tion in dB/dB
Range:]0,10]
limiter_threshold vector<float> | limiter threshold in dB [100]
tau_attack vector<float> | attack time constantin s [0.005]
Range: [0,]
tau_decay vector<float> | decay time constantins [0.05]
Range: [0,]
bypass bool bypass dynamic compression no
clientid string Client ID of last fit
gainrule string Gain rule of last fit
preset string Preset name of last fit
modified int Flag if configuration has been modified | (monitor)
level vector<float> | Input level in dB (monitor)
gain vector<float> | Applied gain in dB (monitor)
filterbank string Name of fftfilterbank plugin. Used to
extract frequency information.
cf vector<float> | center frequencies of the frequency | (monitor)
bands [Hz]
ef vector<float> | edge frequencies of the frequency | (monitor)
bands [Hz]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

5.3 softclip 27

5.3 softclip

The softclipper implements a broad band dynamic compression above a given level (Compres-
sion limiting).

5.3.1 Supported domains

The MHA plugin softclip supports these signal domains:

« waveform to waveform

5.3.2 Plugin Tags

compression limiter level-modification

5.3.3 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
tau_decay float time constant of decay filter 0.05
Range: [0,[
tau_attack float time constant of attack filter 0.002
Range: [0,]
start float entry point of time domain soft clipping | 110
(dB)
slope float slope of input-output table above start | 0.125
(dB/dB)
Range: [0,]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

28

CONTENTS

6 Plugin category ‘data-export’

6.1 ac2lsl

Send AC variables as LSL messages.

6.1.1

Detailed description

This plugin provides a mechanism to send ac variables over the network using the lab streaming
layer (Isl). If no source id is set, recovery of the stream after changing channel count, data type,
or any configuration variable is not possible. Sending data over the network is not real-time safe
and processing will be aborted if this plugin is used in a real-time thread without user override.
Currently no user-defined types are supported.

6.1.2 Supported domains

The MHA plugin ac21s1 supports these signal domains:

» waveform to waveform

* spectrum to spectrum

6.1.3 Plugin Tags

data-export network-communication lab-streaming-layer

6.1.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
vars vector<string> | List of AC variables to be saved, empty |]

for all.
source_id string Unique source id for the stream outlet.
rt_strict bool Abort if used in real-time thread? yes
activate bool Send frames to network? yes
nominal_srate | float Nominal sampling rate of AC variables | 0

Range: [0,]
skip int Number of frames to skip after sending | 0

Range: [0,]

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

6.2 ac2osc 29

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
6.2 ac2osc

Send AC variables as OSC messages over udp.

6.2.1 Detailed description

Send AC variables as OSCvariables using the UDP transport layer. The variable "vars" can
be used to select variables from the AC space for sending. The sending of variables can be
verified using the open source tool "dump_osc". When selecting an AC variable, a target path
can be specified using the colon delimiter, e.g.:

vars = [level:/mhalevels]

6.2.2 Supported domains

The MHA plugin ac2osc supports these signal domains:

« waveform to waveform

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

6.2.3 Plugin Tags

30

CONTENTS

data-export network-communication open-sound-control

6.2.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
host string OSC server host name localhost
port string OSC server port 7777
ttl int Time-to-live of UDP packages (1 = | 1
subnet)
vars vector<string> | List of AC variables to be saved, empty | []
for all. A colon may be used to specify
target address.
mode keyword_list record mode pause
Range: [rec pause]
skip int number of frames to skip after sending | 0
Range: [0,]
rt_strict bool abort if used in real-time thread? yes

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
6.3 ac2xdf

ac variable file recorder

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

6.3 ac2xdf 31

6.3.1 Detailed description

The ’ac2xdf plugin saves the contents of algorithm communication (AC) variables into XDF files.
This plugin writes the values of an ac variable to an XDF file in a thread-safe manner. It always
records the value that is current when its process callback is called, i.e. if an ac variable is
written to by multiple plugins, only the final values are committed to file, intermediary values
are lost. Numeric und character valued AC variables are supported. Complex data are stored
storing real part and imaginary part consecutively. The AC variable may change the number
of elements that it contains from one process call to the next, but its stride (e.g. number of
channels or number of bins) must remain constant.

A new data file is opened every time the "record" variable is set to yes after "cmd=prepare”
is issued. The file is closed on any of "cmd=release", "cmd=quit" or "record=no". Note that
"cmd=stop" does not close the data file. After the the close command is given, it can take
an unspecified, but usually small amount amount of time until the file is actually closed and
ready for further processing. The name (and path) of the output file is chosen by the "prefix"
configuration variable. By default the current date and time and the file name extension ".dat"
are appended to the file name, this behaviour can be influenced by the "use_date" variable.
The date format follows ISO 8601 extended format omitting colons and time zone information,
so e.g. November 5, 1994, 8:15:30 corresponds to 1994-11-05T081530. If more data arrives
through the process callback than can be written to disk in the same time, then some of the
incoming data will have to be discarded before writing to disk continues. This may e.g. happen

with slow disks like network drives or SD cards, or with very high data rates.

The "fifolen" and "minwrite" variables control the behaviour of the fifo buffer and should usually
remain unchanged.

6.3.2 Supported domains

The MHA plugin ac2xdf supports these signal domains:

» waveform to waveform

- spectrum to spectrum

6.3.3 Plugin Tags

data-export disk-files

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

32

CONTENTS

6.3.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
fifolen int Length of FIFO in samples 262144
Range: [2,]
minwrite int Minimal write length (must be less then | 65536
fifolen)
Range: [1,]
prefix string Path (including path delimiter) and file
prefix
use_date bool Use date and time (yes), or only prefix | yes
(no)
varnames vector<string> | Name of AC variables 1
record bool Recording session. Each write access | no
will finalize the previous recording ses-
sion. Each write access with value
"yes" will start a new recording session
into a new or re-opened output file.

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
6.4 acmon

This plugin converts AC variables into parsable monitor variables.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

6.4 acmon

33

6.4.1 Detailed description

This plugin converts AC variables into parsable monitor variables. It publishes a monitor vari-
able containing the name of every AC variable, a monitor variable containing the dimensions
of every AC variable and a monitor variable corresponding to every displayable AC variable.

Currently all AC variables of numerical types and character types are supported.

The monitor variables are either updated continously (recmode="cont") or on request (rec-
mode="snapshot"). To request a snapshot set recmode to "snapshot". Multidimensional AC
variables can either be displayed linearized, i.e. as vector, or as matrix, using the stride and
number of entries to determine the number of rows and columns. This behavior is controlled
by the "dismode" configuration variable. The size information monitor is not updated after the

prepare command.

6.4.2 Supported domains

The MHA plugin acmon supports these signal domains:

« waveform to waveform

- spectrum to spectrum

6.4.3 Plugin Tags

data-export network-communication

6.4.4 Configuration variables

Range: [cont snapshot]

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
varlist vector<string> | complete list of variables (monitor)
dimensions vector<string> | variable dimensions in AC space (monitor)
dispmode keyword_list display mode of variables vector
Range: [vector matrix]
recmode keyword_list record mode cont

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

34 CONTENTS

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
6.5 acrec

ac variable file recorder

6.5.1 Detailed description

AC variable file recorder plugin. This plugin writes the values of an ac variable to a file in a
thread-safe manner. It always records the value that is current when its process callback is
called, i.e. if an ac variable is written to by multiple plugins, only the final values are committed
to file, intermediary values are lost. A new data file is opened every time the record variable
is set to yes. The file is closed on any of "cmd=release", "cmd=quit" or "record=no". Note
that "cmd=stop" does not close the data file. After the the close command is given, it can take
an unspecified, but usually small amount amount of time until the file is actually closed and
ready for further processing. The name (and path) of the output file is chosen by the prefix
configuration variable. By default the current date and time and the file name extension ".dat"
are appended to the file name, this behaviour can be influenced by the "use_date" variable.
The date format follows ISO 8601 extended format omitting colons and time zone information,
so e.g. November 5, 1994, 8:15:30 corresponds to 1994-11-05T081530. Only AC variables of
numeric types can be stored into a file by this plugin. Regardless of the data type of the AC
variable, the data is converted to data type double and stored as binary data in host byte order.
Complex data are stored storing real part and imaginary part consecutively. No metadata is
stored in the file.

The AC variable may change the number of elements that it contains from one process call to
the next, but its stride (e.g. number of channels or number of bins) must remain constant.

If more data arrives through the process callback than can be written to disk in the same time,
then some of the incoming data will have to be discarded before writing to disk continues. This
may e.g. happen with slow disks like network drives or SD cards, or with very high data rates.

The "fifolen" and "minwrite" variables control the behaviour of the fifo buffer and should usually
remain unchanged.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

6.5 acrec 35

6.5.2 Supported domains

The MHA plugin acrec supports these signal domains:

» waveform to waveform

* spectrum to spectrum

6.5.3 Plugin Tags

data-export disk-files

6.5.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
fifolen int Length of FIFO in samples 262144
Range: [2,]
minwrite int Minimal write length (must be less then | 65536
fifolen)
Range: [1,]
prefix string | Path (including path delimiter) and file
prefix
use_date bool Use date and time (yes), or only prefix | yes
(no)
varname string | Name of AC variable
record bool Recording session. Each write access | no
will finalize the previous recording ses-
sion. Each write access with value
"yes" will start a new recording session
into a new or re-opened output file.

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

36 CONTENTS

6.6 acsave

Save chain data to text or Matlab 4 files.

Usage:

1. set up file name and type

2. set the maximal length. This will start the recording.

3. Set "flush" to yes to save recorded frames. This will overwrite previously written data.

File name and type can be changed at any time and has to be valid when sending the flush
command. Changing the list of variables also starts the recording with the currently configured
recording length (previously recorded data might be overwritten). Issueing the ’flush’ command
frees allocated memory.

6.6.1 Detailed description

The ’acsave’ plugin can save numeric algorithm communication variables (AC variables) into
files. The files can have plain text, MATLAB 4.x or MATLAB script format. Each signal frame
represents a row. The number of columns is gathered at preparation time. If a variable size is
increased after preparation, only the part available at preparation time is stored. If the size is
decreased, it is zero-padded to the original size.

To save the data to disk, first set up file name and type. Then setting the maximal length will
start the recording. At any time, set ’flush’ to yes in order to save the recorded frames. This will
overwrite previously written data.

File name and type can be changed at any time and have to be valid when sending the flush
command.

6.6.2 Supported domains

The MHA plugin acsave supports these signal domains:

« waveform to waveform

- spectrum to spectrum

6.6.3 Plugin Tags

data-export disk-files

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

6.7 trigger2lisl

37

6.6.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
fileformat keyword_list file format of output file txt

Range: [txt mat4 m]
name string output file name
reclen float maximal recording length in seconds 10

Range: [0,]
flush bool flush the buffers to disk no
vars vector<string> | list of variables to be saved (empty: | []

save all)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

6.7 trigger2lsl

ac variable file recorder

6.7.1

This plugin creates sends Isl string markers when an audio channel crosses a configurable
threshold. It is able to detect rising and falling edges. On a rising edge, the string in "ris-
ing_edge" is sent, on a falling edge the string in "falling_edge" is sent. As a simple debouncing
measure the respective marker is sent only after the threshold was crossed for a configurable
number of consecutive samples. Optionally, the timestamp of the marker can be corrected by

Detailed description

the position of the crossing within the audio block.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

38 CONTENTS

6.7.2 Supported domains

The MHA plugin trigger21sl supports these signal domains:

« waveform to waveform

6.7.3 Plugin Tags

data-export network-communication lab-streaming-layer

6.7.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out parser | Output configuration (see below)
rising_edge string | Marker string to be sent when a rising | START
edge is detected
falling_edge string | Marker string to be sent when a falling | STOP
edge is detected
threshold float Threshold 0.5
Range: [0,]
stream_name string | Name of the output stream
use_edge_position | bool Offset timestamp by position of edge | no
within block
min_debounce int Number of consecutive samples the | 3
threshold must have been crossed be-
fore a trigger is issued
Range: [0,]
channel int Channel index where edge detection | 0
should be run
Range: [0,]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

6.8 wave2lsl 39

6.8 wave2lsl

Generate an LSL stream from the incoming waveform.

6.8.1 Detailed description

This plugin provides a mechanism to send the incoming audio signal over the network using the
lab streaming layer (Isl). The number of channels and the fragment size in the incoming audio
fragment is preserved. If no source id is set, recovery of the stream after changing channel
count, data type, or any configuration variable is not possible. Sending data over the network
is not real-time safe and processing will be aborted if this plugin is used in a real-time thread
without user override.

6.8.2 Supported domains

The MHA plugin wave21s1 supports these signal domains:

« waveform to waveform

6.8.3 Plugin Tags

data-export network-communication lab-streaming-layer

6.8.4 Configuration variables

Name Type | Description Default
mhaconfig_in | parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
name string | Name of the LSL stream to be gener- | []

ated.
source_id string | Unique source id for the stream outlet.
rt_strict bool Abort if used in real-time thread? yes
activate bool Send frames to network? yes
skip int Number of frames to skip after sending | 0

Range: [0,]

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

40 CONTENTS

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
6.9 wavrec

wav file recorder

6.9.1 Detailed description

Wave file recorder plugin. This plugin writes the current audio signal to a wave file in a thread-
safe manner. A new wave file is opened every time the record variable is set to yes. The file
is closed on any of "cmd=release", "cmd=quit" or "record=no". Note that "cmd=stop" does not
close the wave file. After the the close command is given, it can take an unspecified, but usually
small amount amount of time until the file is actually closed and ready for further processing.
The name (and path) of the output file is chosen by the prefix configuration variable. By default
the current date and time are appended to the file name, this behaviour can be controlled by
the "use_date" variable. The "fifolen" and "minwrite" variables control the behaviour of the fifo

buffer and should usually remain unchanged.

6.9.2 Supported domains

The MHA plugin wavrec supports these signal domains:

» waveform to waveform

6.9.3 Plugin Tags

data-export disk-files

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

6.9 wavrec

41

6.9.4 Configuration variables

Range: [32_bit_float
Signed_8_bit_ PCM

Signed_16_bit PCM
Signed_24_bit PCM

Signed_32_bit PCM Un-
signed_8 bit PCM 32_bit_float
64 bit float U-Law A-Law
IMA_ADPCM Microsoft. ADPCM
GSM _6.10 32kbs G721 _ADPCM
24kbs G723 ADPCM
40kbs_G723_ADPCM 12_bit DWVW
16_bit DWVW 24 bit DWVW
VOX_ADPCM 16kbs NMS_ ADPCM
24kbs_ NMS_ADPCM

32kbs NMS_ADPCM 16 _bit DPCM
8 bit DPCM Vorbis Opus
16_bit ALAC 20 bit ALAC
24 _bit_ ALAC 32_bit_ALAC]

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
fifolen int Length of FIFO in samples 262144
Range: [2,]
minwrite int Minimal write length (must be less then | 65536
fifolen)
Range: [1,]
prefix string Path (including path delimiter) and file
prefix
use_date bool Use date and time (yes), or only prefix | yes
(no)
record bool Record session. Each write access | no
with argument "yes" will start a new file
with current time and date as a name.
output_sample_format | keyword_list | Output sample format 32_bit_float

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

42 CONTENTS

7 Plugin category 'data-flow’

7.1 ac2wave

Mix the main input signal with a waveform stored into AC variables. Main and AC signal can be
attenuated or delayed by integer fragments. The AC variable and the input waveform have to
have the same dimensions.

Spectral input is discarded and replaced by a zero signal before the AC input is mixed in.

7.1.1 Detailed description

The ’ac2wave’ plugin mixes the input signal with a waveform stored in an AC variable. The input
waveform and the AC signal can be independently attenuated by a linear gain and/or delayed
by integer fragments. The AC input signal and the main input signal need to have the same
dimensions. In the case of spectral input, the last time-domain signal dimensions before the
transformation are used. Spectral input is discarded and replaced by a zero signal before the
AC input is mixed in.

7.1.2 Supported domains

The MHA plugin ac2wave supports these signal domains:

» waveform to waveform

* spectrum to waveform

7.1.3 Plugin Tags

data-flow algorithm-communication

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.2 acConcat_wave 43
7.1.4 Configuration variables

Name Type | Description Default

mhaconfig_in | parser | Input configuration (see below)

mhaconfig_out | parser | Output configuration (see below)

name string | AC variable name

gain_in float Linear gain for main input signal 0

gain_ac float Linear gain for AC input signal 1

delay_in int Delay of main input signal in fragments | 0

Range: [0,[
delay_ac int Delay of AC input signal in fragments 0
Range: [0,[

Variables of sub-parser mhaconfig_in:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)

7.2 acConcat_wave

Concatenating two or more waveforms into one

7.2.1 Detailed description

This plugin concatenates two or more waveforms in the given order into a new waveform all
living in the AC space. The waveforms to be concatenated as well as the concatenated wave-
forms must have the same number of channels. However the lengths of the waveforms to be

concatenated may differ.

The waveforms to be concatenated should have been created in advance by some other plugin.
This plugin creates an AC variable for the concatenated waveform and puts it into the AC space.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

44 CONTENTS

The configuration variable num_AC defines the number of waveforms, which will be concate-
nated into one waveform. The waveforms to be concatenated obey the same naming conven-
tion followed by a numeric suffix defining the order of concatenation. This order begins with
1 and a whole in the numeric order is not allowed. This naming convention is defined by the
user by setting the configuration variable prefix_names_AC. The lengths of each waveform
to be concatenated is defined by the configuration variable samples_AC. This vector variable
must contain an integer value corresponding to each of the waveforms to be concatenated
defining their lengths respectively. The name of the concatenated waveform is defined by the
configuration variable name_con_AC.

This plugin is typically used together with the plugins doasvm_feature_extraction instan-
tiated several times for computing the cross correlation between all combinations of input chan-
nels and with doasvm_classification, which uses the concatenated cross correlation vec-
tors for each channel combination to estimate the arrival direction of audio signals.

As an example, if there are six waveforms, which are supposed to be concatenated into one
waveform, this plugin can be configured as shown in the following:

acConcat_wave.num_AC = 6

acConcat_wave.samples_AC = [161 17 161 161 17 161]
acConcat_wave.prefix_names_AC = "vGCC"
acConcat_wave.name_con_AC = "vGCCcon"

In this case, the six waveforms to be concatenated should be called vGcc_1, vGcc_2,
vGCC_3, vGCC_4, vGCC_5 and vGCcC_6. Note that in the localization context, for a setup
of four microphones, there are six different combinations of two microphones.

7.2.2 Supported domains

The MHA plugin acConcat_wave supports these signal domains:

» waveform to waveform

7.2.3 Plugin Tags

data-flow algorithm-communication

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.3 acPooling_wave 45
7.2.4 Configuration variables
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
num_AC int Number of waveforms to be concate- | 15
nated
Range: [1,28]
prefix_names_AC | string Prefix of the names of the waveforms | vGCC_ac
to be concatenated
samples_AC vector<int> | Lengths of the waveforms to be con- | []
catenated
name_con_AC string Name of the concatenated waveform vGCC_con_AC
numchannels int Number of channels in each waveform | 1

to be concatenated
Range: [1,[

Variables of sub-parser mhaconfig_in:

Name Type

Description

Default

channels | int

Number of audio channels (monitor)

domain string

Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string

Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)

7.3 acPooling_wave

Pooling of several consecutive time frames

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

46 CONTENTS

7.3.1 Detailed description

This plugin computes an average over several consecutive frames using several different ap-
proaches (max, sum, mean, ...). Subsequently, the maximum of the average frame is delivered
as well. The plugin receives the frames through the AC space and deliveres the averaged frame
as well as its maximum to the AC space.

This plugin is typically used together with the plugins doasvm_feature_extraction and
doasvm_classification for estimating the arrival direction of an audio signal. Within this
context, this plugin smooths the vector of estimated arrival directions over time using several
estimation vectors. However, it can also used within other contexts for smoothing purposes of
e.g. waveforms.

The length of a frame is given by the configuration variable numsamples. In the con-
text of localization, for an angular resolution of 5 degrees, a total number of 37 estima-
tion values for the interval of possible arrival directions [-90, 90] would be produced by the
doasvm_classification plugin.

The frames to be smoothed have to be created by some other plugin in advance, e.g.
doasvm_classification plugin for the localization, and should be available in the AC space
to be read by this plugin. The name of the corresponding AC variable is defined using the con-
figuration variable p_name.

At each iteration, this plugin reads the AC variable corresponding to the frame to be smoothed
and smooths it by averaging a number of such frames, which have been read in the past iter-
ations and saved in a pool. The length of this pool in msec is defined using the configuration
variable pooling_wndlen. Depending on the frame rate used within the current MHA configu-
ration, the exact number of iterations, which fall into this pool is computed during the preparation
of this plugin. Note that the length of this pool should be chosen carefully so as to make sure
that more than one frame falls in.

This plugin implements several pooling methods for smoothing the frames saved in the pool.
The alternatives are max, sum and mean. The pooling method to be used is defined using
the configuration variable pooling_type. For each value in the frame (e.g. for each possible
arrival direction in the context of localization), the max pooling takes the maximum between
the iterations. The sum pooling sums these values up. Finally, the mean pooling computes
the arithmetic mean of these values. Once the pooling step has been completed, a smoothed
vector of frames of the same size with a single frame from each iteration has been constucted.
This vector is saved in another AC variable, which is defined by using the configuration variable
pool_name.

Optionally, after the smoothing step, certain areas within the smoothed frame can be weighted
differently. In the localization context, this optional step can correspond to a prior probability to
favour certain possible arrival directions more compared to others. For instance, a hearing aid
waerer can expect that the person who he / she is talking to is infront of him / her. In that case,
the prior probabilities for the frontal directions can be set higher than the other possible arrival
directions. This can be defined by setting tha configuration variable prob_bias. The default
values of this variable are all set to 1, hence uniform distribution. The size of this variable
should be equal to the frame length given in the configuration variable numsamples. The

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.3 acPooling_wave 47

smoothed and weighted frame is saved in yet another AC variable, which is defined by using
the configuration variable p_biased_name.

After the smoothed frame has been computed, the maximum value of this frame is found and
saved in another AC variable. In the localization context, this maximum corresponds to the ar-
rival direction of an audio signal. The name of this AC variable is defined using the configuration
variable max_pool_ind_name.

In the following, an example configuration within a localization context is given. In this configu-
ration, an angular resolution of 5 degrees for the whole circle, namely the interval of [-180, 180]
is considered. In that case, there are in total of 73 possible arrival directions.

acPooling_wave.p_name = p
acPooling_wave.pool_name = pool
acPooling_wave.max_pool_ind_name = pool_max
acPooling_wave.numsamples = 73
acPooling_wave.pooling_wndlen = 300
acPooling_wave.pooling_type = mean

7.3.2 Supported domains

The MHA plugin acPooling_wave supports these signal domains:

« waveform to waveform

7.3.3 Plugin Tags

data-flow feature-extraction algorithm-communication

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

48

CONTENTS

7.3.4 Configuration variables

Name

Type

Description

Default

mhaconfig_in

parser

Input configuration

(see below)

mhaconfig_out

parser

Output configuration

(see below)

numsamples

int

This parameter determines the length
of the wave to be pooled in samples
Range: 10,]

37

pooling_wndlen

int

This parameter determines the length
of the pooling window in msec.
Range: 10,]

300

pooling_type

keyword_list

This parameter determines the pooling
method applied to the pooling window.
Range: [max sum mean]

mean

upper_threshold

float

This parameter sets a threshold for
finding the maximum probability. If the
maximum is above this threshold, it is
taken, even if it is not in the neighbour-
hood of the last estimated direction.
Range: [0,1]

0.75

lower_threshold

float

This parameter sets a threshold for
finding the minimum probability. If
the maximum probability is below this
threshold, the estimated direction of
the last iteration is taken.

Range: [0,1]

neighbourhood

int

This parameter defines the neighbour-
hood of the allowed change of the esti-
mated direction between iterations. -1
means no neighbourhood.

Range: [-1,]

alpha

float

This parameter simulates the forgetting
effect by weighting the frames within
the pooling window, e.g. p(n + 1) = (1 -
alpha) * p(n) + alpha * p_new. 0 means
no weighting.
Range: [0,1]

0.1

p_name

string

The name of the AC variable of the
frame, which is going to be pooled.

p

p_biased_name

string

The name of the AC variable of the bi-
ased frame, after pooling.

prob_biased

pool_name

string

The name of the AC variable of the av-
eraged (pooled) frame.

pool

max_pool_ind_name

string

The name of the AC variable for the in-
dex of the maximum of the averaged
frames

pool_max

like_ratio_name

string

The name of the AC variable for the
likelihood ratios of the averaged frames

like_ratio

prob_bias

vector<float>

A multiplicative probability bias

111111111111 111111

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.4 ac_mul 49

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)
74 ac_mul

Element-wise multiplication expression in style "a * b", where "a" and "b" are AC variables.

7.4.1 Detailed description

The ac_mul plugin can be used to multiply two AC variables element-wise and store the result
in another AC variable. The result AC variable is named after the configured name of this plugin
(see example below). The matrix dimensions of both input AC variables must be identical, and
must not change during signal processing. Multiplying two real-valued input matrices results
in a real-valued output matrix. If at least one of the input matrices is complex-valued, then the
result is also complex-valued.

The names of the AC variables to multiply are extracted from the expression string assigned to
this plugin.

Example: in order to compute the squared samples of a time-domain input signal with this
plugin, one could include the following excerpt in an openMHA configuration:

mhachain.algos = [save_wave:signal ac_mul:squared_signal]
mhachain.squared_signal = signal * signal

which will store the squared samples of the signal in AC variable squared_signal.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

50

CONTENTS

7.4.2 Supported domains

The MHA plugin ac_mul supports these signal domains:

» waveform to waveform

* spectrum to spectrum

7.4.3 Plugin Tags

data-flow math algorithm-communication

7.4.4 Configuration

The plugin represents a variable node in the MHA configuration hierarchy.

Type | Description Default
string | Element-wise multiplication ex- | a*b
pression in style "a * b", where

"a" and "b" are AC variables.
7.5 ac_proc

AC variable processor.

7.5.1 Detailed description

This plugin can use the content of a real-valued AC variable (scalar, vector or matrix) as a time-
domain input of a plugin. A sub-graph for this plugin is created. The return value of the plugin
is stored as an AC variable.

A typical usage of this plugin is feature analysis and processing, e.g., for level compression.

7.5.2 Supported domains

The MHA plugin ac_proc supports these signal domains:

« waveform to waveform

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.6 combinechannels 51
7.5.3 Plugin Tags
data-flow algorithm-communication feature-extraction
7.5.4 Configuration variables
Name Type | Description Default
mhaconfig_in | parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
plugin_name string | Plugin name
input string | Name of AC variable to use as input
(must exist during prepare)
permute bool Permute AC variable? no
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

7.6 combinechannels

Channel combiner

7.6.1 Detailed description

Several filterbank bands can be combined into one or more output channels by summing-up
the input channels. This plugin is intended as a filter resynthesis of linear-phase filter banks.

The input signal is by default expected to have a non-interleaved channel order, i.e., first all
bands of first output channel, then all bands of second channel, etc. This behaviour can be
controlled by the "interleaved" configuration variable.
dent channel-wise and element-wise gains from AC variables to the signal before summa-
tion. This can be done by setting the configuration variables "element_gain_name" and "chan-

nel_gain_name" variables.

It is also possible to apply indepen-

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

52 CONTENTS

7.6.2 Supported domains

The MHA plugin combinechannels supports these signal domains:

» waveform to waveform

- spectrum to spectrum

7.6.3 Plugin Tags

data-flow audio-channels filterbank

7.6.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out parser | Output configuration (see below)
outchannels int Number of output channels 1

Range: [1,]
interleaved bool Input signal has interleaved channel | no

order?

channel_gain_name | string | Name of channel gain AC variable
(looked up during prepare, can be
empty)

element_gain_name | string Name of element wise gain AC variable
(looked up during waveform process,
can be empty)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.7 db 53

7.7 db

Synchronous double buffer plugin.

7.7.1 Detailed description

The double buffer plugin allows changes of fragment size. It has an outer layer (e.g. framework)
and an inner layer (e.g. MHA kernel, plugin). A configurable fragment size is used on the inner
side, which is independent from the outer fragment size. The input data is buffered, and the
data is processed when enough samples are available.

Please note that double buffering adds an extra delay of the audio stream. If both fragment
sizes are identical, the double buffering is bypassed.

framework doublebuffer kernel doublebuffer framework
input input input output output output

Figure 3 Concept of the double buffer plugin. The outer fragments, provided by the
framework, are split up into smaller fragments for processing in the kernel. For a
continuous output stream, an extra delay is needed, i.e. the first fragment is filled with
zeros at the beginning.

7.7.1.1 Warning:

If the inner fragment size is larger than the outer fragment size, the maximal processing time is
limited by the shorter fragment size. This results in a maximal processor usage determined by
the ratio of outer to inner fragment size. This problem holds not for offline processing. As an
alternative, the asynchronous double-buffer plugin dbasync (section 7.8) can be used, which
processes the double-buffered signal in a separate thread. That plugin should be preferred for
real-time processing. If the inner thread should only be used for signal analysis, please refer to
the plugin analysispath (section 18.3).

7.7.2 Supported domains

The MHA plugin db supports these signal domains:

» waveform to waveform

7.7.3 Plugin Tags

data-flow signal-transformation

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

54

CONTENTS

7.7.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
plugin_name string | Plugin name
fragsize int fragment size of client plugin 200
Range: [0,]
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
7.8 dbasync

Bidirectional fragment size adaptor (double buffer) with asynchronous processing

7.8.1 Detailed description

Bidirectional fragment size adaptor (double buffer) with asynchronous processing

7.8.2 Supported domains

The MHA plugin dbasync supports these signal domains:

« waveform to waveform

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.8 dbasync

55

7.8.3 Plugin Tags

data-flow signal-transformation

7.8.4 Configuration variables

Name Type

Description

Default

mhaconfig_in parser

Input configuration

(see below)

mhaconfig_out parser

Output configuration

(see below)

plugin_name string

Plugin name

fragsize int

fragment size of inner plugin
Range: [1,]

200

delay int

algorithmic delay present after bidi-
rectional fragment size adaptation
(minimum is inner_fragment_size
- gcd(inner_fragment_size,
outer_fragment_size)

Range: [0,]

0

worker_thread_priority int

Priority assigned to worker threads.
Suggested setting is: Something min-
imally less important than the prior-
ity of the framework processing thread
(see framework thread priority after
preparing the MHA). The default thread
priority given here is invalid. No at-
tempt will be made to set the priority of
the worker thread if this value remains
unchanged.

999999999

worker_thread_scheduler

keyword_list

Scheduler used for worker thread.
Only used for posix threads. Sug-
gested setting is: The same as present
in framework_thread_scheduler after
prepare.

Range: [SCHED_OTHER
SCHED_RR SCHED_FIFQ]

SCHED_OTHER

framework_thread_priority int

Priority of the frameworks processing
thread. Only valid after first signal pro-
cessing callback.

(monitor)

framework_thread scheduler | string

Scheduler used by the framework’s
processing thread. Only valid after first
signal processing callback.

(monitor)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

56

CONTENTS

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
7.9 delay
Delay line

7.9.1 Detailed description

Delays the signal by an integer number of samples which is configurable on a per-channel

basis.

7.9.2 Supported domains

The MHA plugin delay supports these signal domains:

» waveform to waveform

7.9.3 Plugin Tags

data-flow audio-channels signal-transformation

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.10 fader_spec 57
7.9.4 Configuration variables
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
delay vector<int> | delay in samples, one entry for each | [0 0]

channel
Range: [0,]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

7.10 fader_spec

fader

7.10.1 Supported domains

The MHA plugin fader_spec supports these signal domains:

* spectrum to spectrum

7.10.2 Plugin Tags

data-flow audio-channels cross-fade level-modification

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

58

CONTENTS

7.10.3 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
tau float fader duration in seconds 1

Range: [0,[
gains vector<float> [11]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

7.11 fader_wave

Apply level

7.11.1 Supported domains

The MHA plugin fader_wave supports these signal domains:

» waveform to waveform

7.11.2 Plugin Tags

data-flow audio-channels cross-fade level-modification

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.12 matrixmixer 59

7.11.3 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
gain vector<float> | Gain (linear) [1]
ramplen float Length of hanning ramp at gain | 0

changes in seconds

Range: [0,]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)

7.12 matrixmixer

Matrix mixer plugin, can mix multiple input channels into any number of output channels with
configurable weights.

7.12.1 Detailed description

The mat rixmixer plugin can combine the signal from multiple input channels into any number
of output channels, with defined mixing weights.

Example: To combine the two channels of a stereo signal into a single (mono) channel, config-
ure the mat rixmixer plugin configuration variable m as

m= [[1.0 1.0]]

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

60 CONTENTS

which causes the first and the second channel to be multiplied with a weight of 1 before they
are mixed (by adding them together) to form a single output channel.

It is also possible to mix the channels with weights different from 1:
m= [[1 0.5]]

This attenuates the second channel by multiplying all samples in that channel with 0.5 before
mixing it with the first channel. The configuration variable m expects a matrix of float values.
The examples above showed a matrix with only one row, which resulted in only one output
channel being produced by the mat rixmixer plugin. To produce more output channels, more
rows (separated by semicolons)’ can be specified for matrix m:

m= [[1 0];[0 1]]
This is the identity matrix for two channels. This matrix does not change the signal.

The following setting demonstrates how matrixmixer can be used to change the order of audio
channels in a multi-channel signal. This example swaps the first two channels:

m = [[0 1];[1 OJ]

The next setting creates a 4-channel signal output from a stereo signal, where the first two
channels are the original stereo channels, the third is the sum of the two stereo channels, and
the fourth output channel is the difference of the two stereo channels?:

m= [[0 1];([1 O];[1 1];[1 -1]]
The following example duplicates a single input channel to two output channels:
m= [[1];[1]]

To summarize, you need to configure the variable m with a matrix with float values. The matrix
needs to have as many columns as the mat rixmixer receives input channels, and as many
rows as you want matrixmixer to produce output channels.

Example configurations and example input files are contained in the matrixmixer examples
directory. Please refer to the README file in this directory for an explanation of the different
examples.

A matlab/octave test exercising the matrixmixer plugin in six different configurations can be
found in the mhatest directory in file test_matrixmixer.m. This test file is executed together
with the other system-level tests when invoking make test.

'In openMHA configuration, a matrix is specified as a vector of vectors, where the subsequent row vectors
are separated by semicolons. For details, refer to the subsection on multidimensional variables in the openMHA
application manual.

2The combination of the sum and the difference of the two channels of a stereo signal is known as the mid-side
signal and used for stereo transmission in FM radio. We combine it here with the orignial stereo signal for the sole
purpose of demonstrating the creation of more output channels than input channels with the matrixmixer plugin.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.12 matrixmixer

61

7.12.2 Supported domains

The MHA plugin matrixmixer supports these signal domains:

« waveform to waveform

* spectrum to spectrum

7.12.3 Plugin Tags

data-flow audio-channels

7.12.4 Configuration variables

Name

Type

Description

Default

mhaconfig_in

parser

Input configuration

(see below)

mhaconfig_out

parser

Output configuration

(see below)

m

matrix<float>

Mixer matrix, one row vector for each
output channel. The number of
columns must match the number of in-
put channels.

([T O;[0 1]]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

62 CONTENTS

7.13 route

Signal router plugin.

Arguments are the input signal source names (AC variables) followed by a colon, followed by
the channel number, starting at zero. Empty hames correspond to the direct input.

An AC variable will be created if the AC output dimension is not zero. Example: out = [:0 :1 x:0
x:1] ac = [:2 :3] returns a four channel output signal containing first two direct input channels,
and the first two channels of the AC variable "x". An AC variable is created with the third and
fourth channel of the direct input.

7.13.1 Supported domains

The MHA plugin route supports these signal domains:

» waveform to waveform

* spectrum to spectrum

7.13.2 Plugin Tags

data-flow audio-channels algorithm-communication

7.13.3 Configuration variables

Name Type Description Default
mhaconfig_in | parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
out vector<string> | direct output [

ac vector<string> | AC output [

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.14 save_spec 63

7.14 save_spec

Save signal spectrum to AC variable

7.14.1 Detailed description

This plugin saves the spectral signal to an AC variable. The name of the variable is the same
as the name of the plugin and can be changed by assigning an alias to the plugin with the usual
plugin_name:alias_name syntax.

7.14.2 Supported domains

The MHA plugin save_spec supports these signal domains:

* spectrum to spectrum

7.14.3 Plugin Tags

data-flow algorithm-communication

7.14.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

64 CONTENTS

715 save_wave

Save signal waveform to AC variable

7.15.1 Detailed description

This plugin saves the waveform signal to an AC variable. The name of the variable is the same
as the name of the plugin and can be changed by assigning an alias to the plugin with the usual
plugin_name:alias_name syntax.

7.15.2 Supported domains

The MHA plugin save_wave supports these signal domains:

« waveform to waveform

7.15.3 Plugin Tags

data-flow algorithm-communication

7.15.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

7.16 shadowfilter_begin 65

7.16 shadowfilter_begin

Save signal spectrum to AC variable

7.16.1 Detailed description

The plugins 'shadowfilter_begin’ and 'shadowfilter_end’ (section 7.17) are designed to measure
the gains produced by any spectral plugins and apply those gains to audio channels not passed
to the algorithm. This method can be used to process a mixed signal, but apply the same gains
to the unmixed signal parts seperately. For a stereo mixed signal, this can be done by reading
the mixed signal from channels 1 and 2, the desired signal from channels 3 and 4, and the
competing signal from channels 5 and 6. The 'shadowfilter_begin’ plugin hides channels 3 to
6 from the plugin, and remembers the input spectrae for all channels. The 'shadowfilter_end’
plugin compares the processed output signal (channels 1 and 2) with its input spectrum and
derives complex gains produced by the algorithm (without any knowledge of the algorithm).
The same gains are applied to channels 3 to 6.

7.16.2 Supported domains

The MHA plugin shadowfilter_begin supports these signal domains:

* spectrum to spectrum

7.16.3 Plugin Tags

data-flow feature-extraction filter

7.16.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
nch int number of processing channels 1

Range: [1,[
ntracks int number of input sources, each with nch | 1

audio channels

Range: [1,[

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

66 CONTENTS

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

7.17 shadowfilter_end

Compute spectral gains seen since shadowfilter_begin, apply gains to other tracks

7.17.1 Detailed description

See section 7.16 for a description of the shadow filter method. The 'shadowfilter_end’ plugin
creates an AC variable shadowfilter_gains, which contains the complex gains created by the
algorithm.

7.17.2 Supported domains

The MHA plugin shadowfilter_end supports these signal domains:

* spectrum to spectrum

7.17.3 Plugin Tags

data-flow feature-extraction filter

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

8 Plugin category ‘data-import’ 67

7.17.4 Configuration variables
Name Type | Description Default
mhaconfig_in | parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
basename string | configuration name of shadowfil- | shadowfilter_begin

ter_begin

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)

8 Plugin category ‘data-import’

8.1 acSteer

Steering Vector Loading Plugin

8.1.1 Detailed description

The acsteer plugin loads a file contaning pre-computed steering filters (e.g. MVDR filters) to
be used within a beamformer. The steering filters can be monaural (nrefmic = 1) or binaural
(nrefmic = 2). The whole file consists of a column vector of concatenated steering vectors,
which are formatted in the order of angle and channel. This means that the first channel
vector of the first angle is followed by the second channel vector of the first angle until the
last channel. The channel vectors of the first angle are followed by the channel vectors of the

second angle and so an and so forth.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

68 CONTENTS

If the steering filters have been computed for two reference microphones, the steering filters
of the second reference microphone just follow the ones for the first microphone and have the
same format.

This plugin is typically located between a localization plugin (e.g. doasvm_classification)
and a beamforming plugin (e.g. steerbf). The localization plugin estimates the source direc-
tion and saves it in an AC variable. This plugin reads the saved direction from the corresponding
AC variable and saves the corresponding steering vector to the AC space, which is used by the
succeeding beamforming plugin for steering the beam towards that particular direction.

The configuration variable nrefmic indicates the number of different reference microphone set-
tings, for which the filters were computed. For each reference microphone and each possible
DOA angle and each input channel one filter should be provided so that

nsteerchan = nrefmiz * nchan * nangle (5)

8.1.2 Supported domains

The MHA plugin acsteer supports these signal domains:

* spectrum to spectrum

8.1.3 Plugin Tags

data-import disk-files beamforming binaural adaptive

8.1.4 Configuration variables

Name Type | Description Default

mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
steerFile string | Name of the input file where the steer- | steerfile.bin

ing vectors are saved
acSteerName1 | string | Name of the AC variable where the | acSteerlLeft
steering vectors of the first (left) refer-
ence microphone are saved
acSteerName2 | string | Name of the AC variable where the | acSteerRight
steering vectors of the second (right)
reference microphone are saved

nsteerchan int Number of channels in each steering | 4
vector

nrefmic int Number of reference microphones 1
Range: 10,2]

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

8.2 addsndfile 69

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

8.2 addsndfile

Add sound data from a sound file to the MHA audio channels.

The sound file is read into memory and scaled as determined by configuration variables "level"
and "levelmode".

Changing any parameter except "mode" will start playing the file from the beginning. addsndfile
stores the complete sound file in RAM memory before starting playback, this limits the total
duration of sound files that can be read by addsndfile.

8.2.1 Detailed description

The addsndfile plugin modifies the audio signal by either mixing the sound from a sound file
to the openMHA audio signal that reaches the addsndfile plugin, or by replacing the openMHA
audio signal completely with the sound from a sound file. The addsndfile plugin to does not
change the number of openMHA audio channels.

The playback level of the sound inside the openMHA and the meaning of the 1evel variable
depend on the settings in the 1evelmode field:

levelmode=relative Each sound file channel plays back inside the openMHA at a level of
(level + L¢5) where level is the value of configuration variable 1evel and Ly, is the level
of the respective channel in dB re full scale inside the sound file.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

70 CONTENTS

levelmode=peak If peak is selected, the level denotes the peak level of the input file: The
sound file will be scaled so that the maximum magnitude sound sample will be mapped

level

to an amplitude 1020 - 2 - 10~°Pa, which is the amplitude of a rectangular wave with that
level in dB SPL.

levelmode=rms The sound file will be scaled so that it plays back with the level defined by
level (in dB SPL) inside openMHA. openMHA uses the same scaling factor for all audio
channels of the sound file based on the RMS level across all channels. Therefore, if
different channels inside the sound file have different levels re full scale, then the scaling
will result in some channels playing back at a softer level, and some at a higher level than
level. The inter-channel level difference in openMHA playback levels will be the same as
in the sound file.

The sound file may be stored with a different sampling rate than the the sampling rate of the
openMHA at the point where the addsndfile plugin is loaded into the processing chain. The
parameter resamplingmode controls how addsndfile behaves when differing sampling rates
are detected in the sound file and in openMHA:

resamplingmode=dont_resample_permissive The sound samples from the sound file
are played inside openMHA without resampling. The file will play back at too high or too
low pitches if the sampling rates in the file and in openMHA differ.

resamplingmode=dont_resample_strict The sound from the sound file is only played
back inside openMHA if the sampling rates in sound file and openMHA match exactly. If
the sampling rates differ, an error is triggered.

resamplingmode=do_resample The sound from the sound file is resampled to the open-
MHA sampling rate if the sampling rates in sound file and openMHA differ.

8.2.2 Supported domains

The MHA plugin addsndfile supports these signal domains:

« waveform to waveform

8.2.3 Plugin Tags

data-import disk-files signal-generator

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

8.2 addsndfile

71

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

72

CONTENTS

8.2.4 Configuration variables

Name

Type

Description

Default

mhaconfig_in

parser

Input configuration

(see below)

mhaconfig_out

parser

Output configuration

(see below)

path

string

The directory containing the sound file
to read. Should end in the system-
specific directory separator, e.g. /, if
non-empty. If empty, then the current
working directory of the mha process
is used. path can be given absolute or
relative to the current working directory
of the mha process.

filename

string

File name of the sound file. If empty,
addsndfile does not modify the sound.

loop

bool

Infinitely loop sound file playback

yes

level

float

Level in dB. Exact meaning of this pa-
rameter depends on levelmode.

0

levelmode

keyword_list

relative - scaling relative to original
level peak - scaling to maximum abso-
lute magnitude rms - scaling to long-
term rms level Refer to the detailed
description subsection in the plugins
manual for details.

Range: [relative peak rms]

relative

resamplingmode

keyword_list

Resampling mode, for details refer to
the detailed description subsection in
the plugins manual.

Range: [dont_resample_permissive
dont_resample_strict do_resample]

do_resample

channels

vector<int>

Indices of MHA channels in which to
store each of the sound file chan-
nels. Indices start from 0. If the
sound file has fewer channels than the
"channels" vector has elements, then
the channels of the file will be dupli-
cated. Note: The addsndfile plugin
does not change the number of MHA
audio channels. If you specify an MHA
channel index >= the number of MHA
channels, then that channel from the
sound file will not be used.

Range: [0,]

[0]

mode

keyword_list

add: combine sounds from file and
MHA input, replace: discard MHA
input, play only file, input: leave
MHA input unmodified, mute: no
sound output. This parameter can be
changed during playback without caus-
ing rewind

Range: [add replace input mute]

add

ramplen

float

Length of hanning ramp at level
changes in seconds

Range: [0,]

startpos

int

Starting position in samples, loop will
begin from zero
Range: [0,]

mapping

vector<int>

Channel mapping

(monitor)

filechannels

int

Number of channels in current file

(monitor)

mhachannels

N ©2005-202

1gﬁé?ﬁ%%rg%Mﬁ%?@&%ﬁ?&?mv%mr

zem']rgm tSmenburg; gGmbH

active

int

indicates if sound currently plays back

(monitor)

search_pattern

string

Search pattern for file list

*.wav

filAa

vrnntar cadrirm s~

ArviatlanlA filAa

Iranmitar)

8.3 double2acvar 73

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

8.3 double2acvar

Converts configuration variable of type string containing a decimal floating point number literal
to algorithm communication variable of type double. Name of the AC variable is the configured
algorithm name.

8.3.1 Detailed description

Publishes an AC variable of type double. Because the openMHA configuration language does
not have configuration variables of type double, we are using a configuration variable of type
string. The string is converted to double by the C function atof () which means:

—

. The number format uses the standard C locale.

2. Leading white space is skipped.

3. The string is converted up to the first non-conversible character.
4

. Empty strings and strings with only con-conversible characters convert to value 0.0.

8.3.2 Supported domains

The MHA plugin double2acvar supports these signal domains:

» waveform to waveform

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

74 CONTENTS

8.3.3 Plugin Tags

data-import

8.3.4 Configuration

The plugin represents a variable node in the MHA configuration hierarchy.

Type | Description Default
string | Converts configuration variable | 0

of type string containing a dec-
imal floating point number lit-
eral to algorithm communication
variable of type double. Name of
the AC variable is the configured
algorithm name.

8.4 Isl2ac

Receive LSL streams and copy them to AC variables.

8.4.1 Detailed description

This plugin provides a mechanism to receive Isl streams and convert them to ac variables. It
currently only supports MHA_AC_FLOAT-type variables. Type conversions from other types of
stream should be handled in the background. This is a beta version of the plugin. It is proba-
bly real-time safe. An LSL stream named NAME results in the following AC variables: NAME
containing the data, NAME_ts containing the time stamps, NAME_ts containing the offset be-
tween receiver and sender clocks, and NAME_new containing the number of new samples per
channel since the last process callback. The size of the AC variables is configurable via the
nchannels and nsamples configuration variables. nchannels controls the stride of the AC vari-
able and must be equal to the number of channels of the AC variables or be left on default
to accept any number of channels of the LSL stream. nsamples corresponds to the number
of samples per channel of the AC variable. Leaving nsamples on default means that the AC
variable will be resized according to the number of samples received, up to a maximum of
chunksize samples. If the size of the AC variable is fixed and there are less samples available
in the LSL buffers than are needed to fill the AC variable, the oldest samples are overwritten
and the contents of the AC variable are reordered so that the oldest samples come first. On
overrun, i.e. there are more samples available than fit in the AC variable, the user can decide
if all samples but the newest should be discarded or if the overrun should be ignored and only
the oldest samples should be saved to AC, leaving newer samples in the LSL buffers. Warning:
If the overrun behavior is set to discard, the plugin pulls new samples as long as samples are
ready for pickup in the LSL buffers. If the sender is considerably faster than the receiver this
may cause the plugin to hang indefinitely. The buffer length and chunk size of the LSL inlet
are configurable. For more details on the meaning of these variables please consult the LSL

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

8.4 Isl2ac

75

documentation. In the case of string type streams e.g. marker streams, only one entry is saved
into the AC variable. The nchannels configuration variable is ignored for string streams, marker
streams with more than one channel are not supported. To nsamples configuration variable
is used to determine the size of the character buffer used to store the received strings Longer
marker strings are cut off memory safe, they may however cause memory allocations within Isl,
so the size should not be chosen too small. The configuration regarding the AC variable size
and the LSL stream inlet applies plugin wide. To use per-stream configuration this plugin must

be instantiated multiple times.

8.4.2 Supported domains

The MHA plugin 1s12ac supports these signal domains:

» waveform to waveform

- spectrum to spectrum

8.4.3 Plugin Tags

data-import network-communication

8.4.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
streams vector<string> | List of LSL streams to be saved, empty |]

for all.
activate bool Receive from network? yes
overrun_behavior | keyword_list How to handle overrun discard

Range: [discard ignore]
nchannels int The number of channels to expect of | 0

the LSL stream, also determines stride

of AC variable. Default means sender

decides

Range: [0,2.1475e+09]
buffersize int The maximum amount of data for LSL | 360

to buffer. In seconds if there is a nom-

inal sampling rate, otherwise x100 in

samples

Range: [0,]
chunksize int The maximum granularity, in samples, | 0

at which chunks are transmitted by

LSL. Default means sender decides

Range: [0,]
nsamples int The number of samples per channel | 0

to be stored in the AC variable. De-

fault means the AC variable will be re-

sized as needed to accommodate the

samples received, up to a maximum of

chunksize.

Range: [0,]
available streams | vector<string> | List of all available LSL streams (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

76 CONTENTS

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
8.5 osc2ac

Receive OSC messages and convert them to AC variables. Only data type float can be re-
ceived.

8.5.1 Detailed description

Receive open sound control (OSC) messages and mirror their data in AC variables. This plugin
can receive OSC messages provided that they contain only numbers (scalars or vectors).

The configuration variable vars can be used to control which OSC messages to receive, and
to define the names of the AC variables in which the received data is mirrored inside the open-
MHA, e.g.:

Example 1:
osc2ac.vars = [spatial/source/0/sphericalCoords spatial/setParam/headRadius]
osczac.size = [3 1]

Example 1 shows an osc2ac configuration that receives OSC messages with addresses
/spatial/source/0/sphericalCoords and /spatial/setParam/headRadius, the
first of which is expected to contain 3 floating point values (a vector), while messages with
the latter address are expected to contain only 1 floating point value (a scalar) in each re-
ceived message. The data received at these addresses will be mirrored in the AC variables
spatial/source/0/sphericalCoords and spatial/setParam/headRadius, respec-
tively. Note that the openMHA configuration and the AC variable name do not contain the
leading slash /. This leading slash is prepended by the osc2ac plugin when constructing the
OSC address for which messages are received from the vars entry.

It is also possible to give AC variable name and OSC address separately by separating them
with a colon, e.g.: colon delimiter, e.g.:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

8.5 osc2ac 77

Example 2:
vars = [level:/mhalevels]

In example 2, data received in OSC messages with address /mhalevels is mirrored in the AC
variable 1evel. When size is not set in this example, the default value 1 for scalars is used
for all AC variables and OSC messages.

8.5.2 Supported domains

The MHA plugin osc2ac supports these signal domains:

« waveform to waveform

- spectrum to spectrum

8.5.3 Plugin Tags

data-import network-communication open-sound-control

8.5.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
host string multicast adress (empty for unicast)

port string server port 7777

vars vector<string> | List of AC variables to provide as re- | []

ceivers of OSC messages. Each AC
variable will mirror the latest received
OSC message with address /NAME
where each NAME is the name of the
mirroring AC variable as given here.
For more details, please refer to the
detailed description subsection in the
manual.

size vector<int> Number of floats to receive with the AC | [1]
variables from OSC. Each entry here
corresponds to the entry in vars with
the same index and determines the
length of the float vector that will be al-
located to receive the OSC messages
with the corresponding address.
Range: [1,]

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

78 CONTENTS
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)

9 Plugin category ‘’example’

9.1 attenuate20

This plugin attenuates by 20dB

9.1.1 Detailed description

Plugin attenuate20 attenuates the input signal by 20dB.

9.1.2 Supported domains

The MHA plugin attenuate20 supports these signal domains:

* waveform to waveform

9.1.3 Plugin Tags

example level-modification

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

9.2 examplel 79
9.1.4 Configuration variables
Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

9.2 examplel

9.2.1 Detailed description

The simplest example of an openMHA plugin.

This plugin scales one channel of the input signal, working in the time domain.

9.2.2 Supported domains

The MHA plugin examplel supports these signal domains:

» waveform to waveform

9.2.3 Plugin Tags

example level-modification audio-channels

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

80

CONTENTS

9.2.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
9.3 example2

This plugin multiplies the sound signal in one audio channel by a factor

9.3.1 Supported domains

The MHA plugin example2 supports these signal domains:

» waveform to waveform

9.3.2 Plugin Tags

example level-modification audio-channels

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

9.4 example3 81
9.3.3 Configuration variables
Name Type | Description Default
mhaconfig_in | parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
channel int Index of audio channel to scale. In- | 0
dices start from 0.
Range: [0,]
factor float The scaling factor that is applied to the | 0.1
selected channel.
Range: [0,]
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
9.4 example3

This plugin multiplies the sound signal in one audio channel by a factor

9.41 Supported domains

The MHA plugin example3 supports these signal domains:

« waveform to waveform

9.42 Plugin Tags

example level-modification audio-channels

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

82

CONTENTS

9.4.3 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
channel int Index of audio channel to scale. In- | 0
dices start from 0. Only channels with
even indices may be scaled.
Range: [0,[
factor float The scaling factor that is applied to the | 0.1
selected channel.
Range: [0,[
prepared int State of this plugin: 0 = unprepared, 1 | (monitor)
= prepared
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
9.5 exampled

This plugin multiplies the sound signal in one audio channel by a factor. It works in the spectral

domain.

9.5.1 Detailed description

This plugin scales one channel of the input signal, working in the spectral domain. The scale
factor and the scaled channel number is made accessible to the configuration structure.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

9.5 example4 83
9.5.2 Supported domains
The MHA plugin example4 supports these signal domains:
* spectrum to spectrum
9.5.3 Plugin Tags
example level-modification audio-channels
9.5.4 Configuration variables
Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
channel int Index of audio channel to scale. In- | O
dices start from 0. Only channels with
even indices may be scaled.
Range: [0,]
factor float The scaling factor that is applied to the | 0.1
selected channel.
Range: [0,]
prepared int State of this plugin: 0 = unprepared, 1 | (monitor)
= prepared
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

84 CONTENTS

9.6 example5

example plugin scaling a spectral signal

9.6.1 Detailed description

This plugin scales one channel of the input signal, working in the spectral domain. The scale
factor and the scaled channel number is made accessible to the configuration structure.

9.6.2 Supported domains

The MHA plugin example5 supports these signal domains:

* spectrum to spectrum

9.6.3 Plugin Tags

example level-modification audio-channels

9.6.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
channel int channel number to be scaled 0

Range: [0,
factor float scale factor 1

Range: [0,2]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

9.7 example6 85

9.7 example6

Example rms level meter plugin

9.7.1 Detailed description

This plugin calculates the RMS level of a given channel of the input signal, working in the time
domain. The channel number is made accessible to the configuration structure and the result
is stored into a algorithm communication variable (AC variable).

9.7.2 Supported domains

The MHA plugin example6 supports these signal domains:

« waveform to waveform

9.7.3 Plugin Tags

example feature-extraction algorithm-communication

9.7.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
channel int channel in which the RMS level is mea- | 0

sured

Range: [0,]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

86 CONTENTS

9.8 example7

9.8.1 Detailed description

The is again example1 but split into .hh and .cpp-file in order to provide the class declaration to
the Unit-TestThis plugin scales one channel of the input signal, working in the time domain.

9.8.2 Supported domains

The MHA plugin example7 supports these signal domains:

« waveform to waveform

9.8.3 Plugin Tags

example level-modification audio-channels unit-testing

9.8.4 Configuration variables

Name Type | Description Default
mhaconfig_in | parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

10 Plugin category 'feedback-suppression’ 87

10 Plugin category ‘feedback-suppression’

10.1 adaptive_feedback_canceller

Prediction error method for adaptive feedback cancellation

10.1.1 Detailed description

This plugin implements an adaptive feedback canceller (AFC) that uses the normalized least
mean squares (NLMS) method for filter estimation. The flowgraph of the algorithm is shown in
Figure Fig. 4.

Y

LSsig > L

Forward Path Backward Path
Y A 4
delay_roundtrip
forward path {measured @%ﬁfﬁip
i roundtrip latency) - — -
processing frap ate ¥ + fragsize - 1
75 L4
FBfilter_true
Y A 4
NLMS
delay_forward_path FBfilter-gstim filter FBsig true
estimation
A E
“..., } ERRsig
~FBsig_estim: — MICsig arget=——

uuuuuuu

Figure 4 Block diagram of the AFC plugin

The basic problem of an AFC is that the microphone signal
MICsig = target + FBsig_true (6)
consists of the target signal, which we want to preserve, and the true feedback signal
FBsig_true = 6(t — roundtrip_latency) * FBfilter_true (LSsig), (7)

which we want to eliminate. We assume that FBsig true is the filtered loudspeaker signal
(LSsig), filtered by the true acoustic feedback path (FBfilter_true), which in turn is assumed
as an FIR filter and unknown to the algorithm. 4(¢) is the Delta-Impulse-Function depending
on the time ¢ in samples. In a real-world setup FBsig_true is delayed by the roundtrip latency,
describing the timespan between playing back and receiving the same signal, including the de-
lays induced by the transducers and buffering of the soundcard. This latency is also unknown
but can be measured on the physical system in order to properly configure the plugin param-
eter delay roundtrip and delay _update. One way to measure the roundtrip latency is to use
jack_iodelay, more info on how to do that exactly can be found in the example 37-adaptive-
feedback-canceller/README.md.

After receiving MICsig, the first processing step in the AFC is to calculate the error signal

ERRsig = MICsig — FBsig_estim. (8)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

88 CONTENTS

ERRsig is an estimation of the target by subtracting the estimated feedback signal FBsig_estim
from MICsig. FBsig_estim is computed by filtering the delayed LSsig with the estimated feed-
back path filter FBfilter_estim

FBsig_estim = FBfilter_estim (§(¢ — delay_roundtrip) * (LSsig)) . 9)

In order to measure ERRsig accurately, the temporal alignment between MICsig and FB-
sig_estim has to be about the same as the alignment between target and FBsig_true in equa-
tion (6). The internal plugin parameter delay_roundtrip provides the right value for the tempo-
ral alignment and is directly computed from the measured roundtrip latency and the fragsize.
Note: This algorithm was developed assuming that the soundcard’s fragsize is equal to the
MHA'’s fragsize. The AFC’s variable fragsize defaults to the MHA’s fragsize.

In the forward path the intended signal processing is performed. This AFC algorithm provides
a pluginloader that can load a plugin into the forward path processing®. The forward path pro-
cessing represents the hearing aid processing. In detail, a copy of ERRsig is used as input
for the pluginloader and the output is saved to LSsig. Note: All plugins loaded outside of the
forward path processing are not considered by the AFC concerning signal properties and in-
duced delays for the feedback path filter estimation. Additionally, a delay is added to the signal
in the forward path (delay_forward_path). This delay is used for signal decorrelation because
the filter estimation of the AFC is biased if LSsig and target are correlated.

The backward path handles the update of the feedback filter estimation FBfilter_estim and the
filtering of LSsig with FBfilter_estim. Both processing steps depend on the measured roundtrip
latency, which is used to compute internal delays. The filter update step in this AFC algorithm
is performed using the NLMS method in the time-domain (refer to [1]) for each sample in a
process () callback. stepsize is the variable for the adaption speed. Changing the value of
stepsize is a trade-off between convergence speed and estimation error, the higher the value
the higher the convergence speed and estimation error. Different real-world settings demand
different stepsize values, as a user you have to find out what works best, but it is recommended
to keep the value below 0.2 (see [2]). min_const is a regularization parameter to avoid division
by zero. It should be kept as low as possible to not interfere with the adaption at low output
levels.

This plugin performs feedback cancellation for each channel seperately. A channel here is
meant as a loudspeaker-microphone pair. Therefore, you must have the same number of input
and output channels. Please refer to openMHA/examples/31-adaptive-feedback-canceller for
usage examples of the plugin.

Reference:

[1]: Spriet, A., Doclo, S., Moonen, M., and Wouters, J. (2008). Feedback control in hearing aids.
In Springer Handbook of Speech Processing (pp. 979-1000). Springer, Berlin, Heidelberg.

[2]: Moonen, M., and Proudler, 1. (1998). Introduction to adaptive signal processing. Depart-
ment of Electrical Engineering ESAT/SISTA KU Leuven, Leuven, Belgium, 105-107.

10.1.2 Supported domains

The MHA plugin adaptive_feedback_canceller supports these signal domains:

« waveform to waveform

3Plugin mhachain can be used if the forward path consists of multiple plugins.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

10.1 adaptive_feedback_canceller

89

10.1.3 Plugin Tags

feedback-suppression adaptive

10.1.4 Configuration variables

within the processing

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
plugin_name string Plugin name
stepsize float Step size 0.01
Range: 10,2]
min_const float Regularization parameter 1e-20
Range: 10,]
filter_length int Length of the feedback path filter in | 32
taps
Range: 10,]
fragsize int Fragsize used for internal delay com- | 0
putation, defaults to MHA’s fragsize
Range: [0,[
measured_roundtrip_latency | vector<int> | Latency between playback and record- | [0]
ing of the same signal
Range: [0,[
delay_forward_path vector<int> | Delay in the forward path processing in | [96]
taps
Range: 10,[
blocks_no_update int Number of iterations without updating | 0
the filter coefficients
Range: [0,]
debug_mode bool Set to true to get variable states from | no

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

90 CONTENTS

10.2 fshift

10.2.1 Detailed description

Performs a quantized frequency shift on the selected frequency interval. The frequency band
between (originally) fmin and fmax (frequencies in Hz) is shifted by df (desired frequency
change in Hz). Positive df shifts the selected band to higher frequencies, negative df shifts to
lower frequencies.

The shifted and the unshifted parts of the input signal are split at the STFT bin boundaries
nearest to the. The frequency shift df is rounded to the nearest bin as well. The parts of the
spectrum that would be shifted below 0 Hz or above the Nyquist frequency are discarded.

10.2.2 Supported domains

The MHA plugin £shift supports these signal domains:

* spectrum to spectrum

10.2.3 Plugin Tags

feedback-suppression frequency-modification

10.2.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
fmin float lower boundary for frequency shifter in | 4000

Hz

Range: [0,]
fmax float upper boundary for frequency shifterin | 16000

Hz

Range: [0,]
df float shift frequency in Hz 40

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

10.3 fshift_hilbert 91

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

10.3 fshift_hilbert

Pitch shifter

10.3.1 Detailed description

Performs a frequency shift on the selected frequency interval. The frequency band between
(originally) fmin and fmax (frequencies in Hz) is shifted by df (desired frequency change in
Hz). Positive df shifts the selected band to higher frequencies, negative df shifts to lower
frequencies.

The frequency shift on the sub-band is performed by splitting the input signal’s spectrum into 2
parts: the band to be shifted, and the rest. The band to be shifted is multiplied in the time do-
main with a complex sinusoid of frequency df Hz (see Wardle(1998)#) before it is recombined
in the spectral domain with the unshifted signal part.

By default the shifted and the unshifted parts of the input signal are split at STFT bin bound-
aries. The resulting rectangular transitions between shifted and unshifted parts can be
smoothed if desired by setting phasemode t0 1inear or minimal, and choosing a longer
impulse response length than the default of 1 sample. Our experience with hearing aid appli-
cations so far suggests that smoothing these boundaries is not necessary.

10.3.2 Supported domains

The MHA plugin £shift_hilbert supports these signal domains:

* spectrum to spectrum

4Scott Wardle. A hilbert-transformer frequency shifter Proc. DAFX98 Workshop on Digital Audio Effects, pages
25-29, Barcelona, 1998.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

92 CONTENTS

10.3.3 Plugin Tags

feedback-suppression frequency-modification

10.3.4 Configuration variables

Name Type Description Default
mhaconfig_in | parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
df vector<float> | frequency shift to apply to the band | [40]
[fmin,fmax] in Hz
fmin float lower boundary for frequency shifter 4000
Range: [0,]
fmax float upper boundary for frequency shifter 16000
Range: [0,]
irslen int Bandpass: maximum length of cut off | 1
filter response
Range: [1,]
phasemode keyword_list Bandpass: mode of gain smoothing none
Range: [none linear minimal]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
104 Ipc

This plugin implements the linear predictive coding analysis (LPC) by using the Levinson-Durbin
recursion.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

104 Ipc 93

10.4.1 Detailed description

This plugin estimates the autocorrelation of each block. It then produces the inverse filter using
the Levinson-Durbin recursion.

10.4.2 Supported domains

The MHA plugin 1pc supports these signal domains:

» waveform to waveform

10.4.3 Plugin Tags

feedback-suppression adaptive

10.4.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
lpc_order int LPC filter order 20

Range: [0,500]
Ipc_buffer_size | int Size of the buffer in samples for which | 21

the autocorrelation matrix will be com-

puted

Range:]0,501]
shift bool Refill the LPC buffer completely with | yes

new input signal by ignoring the old
samples (no) or shift the old buffer as
large as the block size of the input sig-
nal and read in the current input signal

(yes).

comp_each_iter | int Reestimate the LPC coefficients each | 1
<comp_each_iter> iterations, default
value is 1
Range:]0,]

norm bool Normalize the auto correlation matrix | no

with the LPC order

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

94 CONTENTS

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)

10.5 Ipc_bl_predictor

This plugin performs forward and backward linear prediction using the Burg - Lattice algorithm
for computing the next value of a given time series.

The estimated forward and backward linear predictionn parameters are saved in th AC space.

10.5.1 Detailed description

This plugin computes the forward and backward LPC estimates using the Burg-Lattice algorithm
given the k (sometimes also called 1) parameter precomputed using the 1pc_burg-lattice
plugin. The estimation of the forward and backward linear prediction parameters is performed
using the following equations: For each forward and backward linear prediction parameter f(m)
and b(m), where m in [2-- - P], P being the Ipc order

fm) = fim—1)4 K(m,2)*b(m —1,2) (10)
b(m,1) = blm—1,2)+ k(m,2)* f(m —1) (11)

. In this implementation « from the previous is used. Note that the second index of « is 2.

10.5.2 Supported domains

The MHA plugin 1pc_bl_predictor supports these signal domains:

« waveform to waveform

10.5.3 Plugin Tags

feedback-suppression adaptive

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

10.6 Ipc_burg-lattice 95
10.5.4 Configuration variables
Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
Ipc_order int LPC order defines the number of coffe- | 21
cients to be estimated
Range:]0,]
name_kappa string | Name of the kappa parameter of the | km
Burg-Lattice algorithm in the AC do-
main to be used for the joint estimation
of more than one time series
name_lpc_f string | Name of the forward LPC estimate of | name_Ipc_f
the Burg-Lattice algorithm in the AC
domain
name_lpc_b string | Name of the backward LPC estimate | name_Ipc_b
of the Burg-Lattice algorithm in the AC
domain
name_f string | Name of the forward linear prediction
parameter
name_b string | Name of the backward linear prediction
parameter
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

10.6 Ipc_burg-lattice

This plugin estimates the linear predictive coding coefficients for estimating the next sample
value of a time series using the Burg-Lattice approach.

The estimated parameters are saved in the AC space.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

96 CONTENTS

10.6.1 Detailed description

This plugin estimates the parameters for the forward and backward linear prediction using the
Burg - Lattice algorithm. The previous estimate of the « parameter is saved in the AC space for
future use inthe 1pc_bl_predictor plugin to estimate several time-series sharing the same
r values.

For the estimation of « the following series of equations are used: For each x in [2---P], P
being the Ipc order

dn(m—1) = Xsxdm(m—1)+ (1 =X *(f(m—1)>4+b(m —1,2)%) (12)
nm(m—1) = Asxnm(m—1)4+(1—=X)*x—=2% f(m—1)xb(m —1,2) (13)
km(m.1) = m (14)

Note that the previous estimate of , which is given by x(m, 2) is saved in the AC space.

10.6.2 Supported domains

The MHA plugin 1pc_burg-lattice supports these signal domains:

» waveform to waveform

10.6.3 Plugin Tags

feedback-suppression adaptive

10.6.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
Ipc_order int LPC order defines the number of coffe- | 21

cients to be estimated

Range:]0,]

name_kappa string | Name of the kappa parameter of the | km
Burg-Lattice algorithm in the AC do-
main to be used for the joint estimation
of more than one time series

name_f string | Name of the forward linear prediction
parameter

name_b string | Name of the backward linear prediction
parameter

lambda float Forgetting factor for the linear predictor | 0.99375
Range: [0,1]

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

10.7 nims_wave 97

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

10.7 nlms_wave

This plugin adaptively estimates the coefficients of a filter by means of the NLMS algorithm.

The estimated filter is stored into an AC variable named by the algorithm configuration name
or by the configuration variable name_f and the input signal is filtered by the current filter and
returned as the output signal of the plugin.

10.7.1 Detailed description

This plugin implements the NLMS algorithm for re-estimating the coefficients of an adaptive
filter in each iteration. The estimated filter coefficients are saved in an AC variable having the
same name as the plugin in the current configuration. The name of this AC variable can also
be set differently by setting the configuration variable name_f. The input signal is filtered by
the filter estimated in the current iteration and returned as the current output of the plugin from
within the processing callback. The estimation of the filter coefficients is performed using the
update rule given as in the following:

elk] = ylk—1] - flk — 1ulk — 1] (15)
flk] = flk—1]+rho/(Ju* + c)u[k — 1]e[k], (16)

where e is the error signal, y is the desired signal and « is the input signal. All three signals are
read from the AC space. For this, the configuration variables name_e, name_d and name_u
should be set. The error signal can also be computed within the plugin given the other two
signals, when the corresponding configuration variable is left empty. The plugin can be config-
ured to use also the current sample u[k] of the input signal in the estimation by asigning the
configuration variable estimtype to the value current. However in the default case (previous),
the previous values as long as the filter (ntaps) but the current one are used.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

98 CONTENTS

10.7.2 Supported domains

The MHA plugin n1ms_wave supports these signal domains:

» waveform to waveform

10.7.3 Plugin Tags

feedback-suppression adaptive

10.7.4 Configuration variables

Name Type Description Default

mhaconfig_in parser Input configuration (see below)

mhaconfig_out parser Output configuration (see below)

rho float convergence coefficient 0.01
Range: 10,2]

c float stabilization parameter 1e-05
Range: 10,]

ntaps int number of taps in filter 32
Range: 10,]

name_u string Name of input signal U

name_d string Name of desired signal D

normtype keyword_list | Normalization type default
Range: [none default sum]

estimtype keyword_list | Estimation type defined whether the | previous

current value of the input signal u[k] will
be incorporated in the estimation of the
filter coefficients or not. Default value
(previous) does not.

Range: [previous current]

lambda_smoothing_power | float Recursive smoothing constant for sum | 0.9
normalization
Range: [0,1]

name_e string Name of error signal E

name_f string Name of the AC variable for saving the
adapive filter

n_no_update int Number of iterations without updating | 0

the filter coefficients

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

10.8 prediction_error 99

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

10.8 prediction_error

Prediction error method for adaptive feedback cancellation

10.8.1 Detailed description

This plugin implements the prediction error method to perform adaptive feedback cancella-
tion.The prediction error method estimates the feedback path by minimizing the error between
the desired and the predicted output signals. The algorithm handles each input sample within
each input channel separately.

The plugin computes not only the least mean squares (NLMS) estimate of the feedback path
but also performs the necessary steps for delaying the input and output signals as well as the
prewhitening using the linear predictive coding (LPC) coefficients. The flow graph of the whole
processing chain is shown in Figure Fig. 5.

In the forward path, the error signal vE is estimated by subtracting the estimated feedback
signal of the output signal vU of the last iteration from the current input signal vY as shown in
Equation 17. This error signal is delayed a configurable number of taps, which is set using the
configuration variable pred_err_delay (dG in the figure). Subsequently a configurable amount
of gain is applied to the delayed error signal to compute the output signal. The amount of gain
can be set using the configuration variable gains.

e[k] = y[k] — vWfull’ [k — 1] - ulk — 1], (17)

In order to compute the feedback signal (the second term in Equation 17), the output signal
is delayed a configurable amount of taps, filtered using the last estimate of the feedback path
vWrull. The aforementioned delay is set using the configuration variable delay_w (dW in the
figure).

In the closed loop identification of the feedback path, the LPC coefficients are used for
prewhitening the input signal as well as the output signal. The LPC coefficients are estimated
in the plugin called LPC and saved in the AC space, which the prediction_error plugin reads in
each iteration (vLPC in the figure). The name of the corresponding AC variable must be set
using the configuration variable name_lpc. Furthermore, the dimensions of the LPC coeffi-
cients must be set using the configuration variable Ipc_order. Prior to the prewhitening step,

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

100 CONTENTS

---\3 WYEM = yX + wF + = VE=wY - vWfull'*vU
vX S
[
r
{ L
' m
[
! Dela
I
I
1
]
]
]
]
1
vF =iF’ *vU
|
' YPrew = vLP
:I 8 . &
: vUBUfPrew = vLPC’ * yU# M' -
1
] -dG
\ wlAw vE
i v |
1]
] LJeld e\ I
\ . i
\ |
‘\ — .
. | e | |
Ry Gain
-—

Figure 5 This figure shows the signal flow and the applied operations on the signal to
perform adaptive feedback cancellation.

the input as well as the output signal are delayed the same amount of taps, which can be set
by the configuration variable delay_d (dLp in the figure).

In the following step, the prewhitened error signal is computed as shown in Equation 17. For

this, the prewhitened output signal is filtered by the last estimate of the feedback path and
subtracted from the prewhitened input signal.

By using the prewhitened output signal and error signal, the NLMS algorithm re-estimates the
coefficients of the feedback path in each iteration.

The estimated filter coefficients are saved in an AC variable having the same name as the

plugin in the current configuration. The name of this AC variable can also be set differently by
setting the configuration variable name_f (vWfull in the figure).

The estimation of the filter coefficients of the feedback path is performed using the update rule
given as in the following:

vWialllk] = vWialllk — 1]+ p - sopr— ‘11}[]:[]{1]_ T (18)

where ¢ is the prewhitened error (EPrew) signal, and « (vUBufPrew) is the output signal. The

step size rho (p in the equation) and the regularization parameter ¢ can be set using the
corresponding configuration variables.

The default values of the numeric configuration variables are optimized for a sampling rate of

16KHz. They have to be adjusted for other sampling rates for optimal feedback cancellation
performance.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

10.8 prediction_error 101
10.8.2 Supported domains
The MHA plugin prediction_error supports these signal domains:
» waveform to waveform
10.8.3 Plugin Tags
feedback-suppression adaptive
10.8.4 Configuration variables
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
rho float Step size 0.01
Range: 10,2]
c float Regularization parameter 1e-05
Range: 10,]
ntaps int Length of the feedback path filter in | 32
taps
Range: 10,]
gains vector<float> | Gainin dB [0]
Range: [-60,60]
name_e string Name of the AC variable for saving the | E
prediction error
name_f string Name of the AC variable for saving the | F
adapive filter
name_lpc string Name of the AC variable for the LPC | Ipc
coefficients
Ipc_order int Length of the Ipc filter in taps 20
Range:]0,1024]
afc_delay vector<int> Delay in the forward path in taps [96]
Range: 10,[
delay_w vector<int> Delay in the adaptive filtering path due | [130]
to the microphone and loudspeaker
transducers in taps
Range: [0,]
delay_d vector<int> Delay in the adaptive filtering path for | [161]
the LPC in taps
Range: [0,]
n_no_update int Number of iterations without updating | 0
the filter coefficients
Range: [0,1024]

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

102 CONTENTS
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)

11 Plugin category ‘filter’

11.1 equalize

Equalizer plugin applies configurable gains to all bins of the spectrum

11.1.1 Detailed description

High resolution gain structure. This plugin allows to apply a bin-wise gain to every bin of the

spectrum.

11.1.2 Supported domains

The MHA plugin equalize supports these signal domains:

« spectrum to spectrum

11.1.3 Plugin Tags

filter level-modification

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

11.2 fitfilter 103

11.1.4 Configuration variables
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)

ize plugin. Usually the equalize plugin
exposes no plugin id. This variable al-
lows to set a plugin id. If set to "equal-
ize", then this plugin can be fitted with
a linear hearing aid fitting rule

gains matrix<float> | gains in FFT resolution (FFT | [[I]
length/2+1 entries required per row)
as linear factors, one row per audio
channel
Range: [0,]

id string Access to the id feature of the equal-

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

11.2 fitfilter

FFT based FIR filter

11.2.1 Detailed description

The “fftfilter’ plugin implements a generic FFT-based FIR filter. The overlap-save method is
used to apply the impulse response to each block of the signal. The default FFT length used is
computed from the fragsize and the inpulse response length and set to the minimum required
FFT length to perform the overlap-save operation (see documentation of configuration variable
fftlen). If this is not a power of two, the computation may be inefficient, and it should be
considered to increase it to the next power of two larger than the required minimum.

The ‘fftfilter’ plugin does not introduce additional delay. Regardless of fragsize, length of impulse
response, or fft length, the computed output of plugin fftfilter’ is the same as if the output had
been computed by performing the convolution on the same signal blocks in the time domain,

except for numerical errors.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

104 CONTENTS

11.2.2 Supported domains

The MHA plugin £ftfilter supports these signal domains:

» waveform to waveform

11.2.3 Plugin Tags

filter

11.2.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
irs matrix<float> | Impulse responses, one row for each | [[1]]
channel (or single row to use in all
channels)
fftlen int FFT length used for FIR filter. If zero, | O

the FFT length is fragsize + impulse re-
sponse length - 1 (assuming that the
discrete Dirac delta function has the
IRS length 1).

Range: [0,]

fftlen_final int FFT length used by FFT filter (com- | (monitor)
puted during prepare)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

11.3 iirfilter 105

11.3 iirfilter

lIR filter

11.3.1 Detailed description

The ’iirfilter’ plugin implements a generic IR filter (direct form Il). The coefficients have the
same names as in MATLAB. Due to different internal implementations and numeric resolutions,
filters may be instable with coeffients which are stable in MATLAB.

11.3.2 Supported domains

The MHA plugin iirfilter supports these signal domains:

« waveform to waveform

11.3.3 Plugin Tags

filter

11.3.4 Configuration variables

Name | Type Description Default
A vector<float> | recursive filter coefficients [1]
B vector<float> | non-recursive filter coefficients [1]

11.4 mconv

FFT based FIR filter using partitioned convolution This plugin filters its input channels using
partitioned fast convolution. The variables in this plugin define a sparse matrix of impulse
responses. The number of elements in the vectors inch and outch and the number of rows in
irs have to be equal.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

106 CONTENTS

11.4.1 Detailed description

The plugin mconv performs partitioned convolution, using a sparse matrix of impulse re-
sponses.

The partition size used for the partitioned convolution is equal to fragsize, the number of
samples per channel in one block of audio. The impulse responses are separated into par-
titions, and each patrtition is applied with the appropriate delay. Each partition is applied using
theoverlap-save method. The FFT length used is 2*fragsize.For efficiency reasons, fragsize
should be a power of two.

This implementation discards impulse response partitions where the coefficients are all zero.

11.4.2 Supported domains

The MHA plugin mconv supports these signal domains:

» waveform to waveform

11.4.3 Plugin Tags

filter

11.4.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
nchannels_out | int Number of output channels to produce | 1

Range: [0,[
inch vector<int> Vector of input channel indices. Each | [0]

element in this vector identifies the in-
put channel to which to apply the cor-
responding impulse response in irs.
Range: [0,]

outch vector<int> Vector of output channel indices. Each | [0]
element in this vector identifies the out-
put channel to which the result of filter-
ing with the corresponding impulse re-
sponse in irs is mixed.

Range: [0,[

irs matrix<float> | Impulse responses, one per row. For | [[1]]
each row, the corresponding element
of inch identifies the source chan-
nel, and the corresponding element of
outch identifies the target channel.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

11.5 steerbf

107

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

11.5 steerbf

Steerable Beamformer

11.5.1 Detailed description

Implements frequency-domain beamformer processing (filter and sum) using externally pro-
vided filters. A plugin called acSteer can be used to provide the filter coefficients. The filter
coefficients to be read are saved as a waveform object in the AC space. Each channel of this
object corresponds to a different steering angle. The steering angle is typically determined
in real-time by a localization plugin (e.g. doasvm_classification). In this case, the in-
dex to the corresponding steering direction is read from the AC space. Note that the number
of available filters should be consistent with the number of possible steering directions to be
estimated. The configuration variable angle_src keeps the name of the AC variable for the es-
timated steering direction. The steering angle can also be fixed in the configuration time using

the configuration variable angle_ind.

11.5.2 Supported domains

The MHA plugin steerbf supports these signal domains:

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

108

CONTENTS

11.5.3 Plugin Tags

filter spatial audio-channels beamforming binaural

11.5.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
bf_src string | Provides the beamforming filters en-
coded as a block matrix: [chanXnan-
gle,nfreq].
angle_ind int Sets the steering angle in filtering. 0
Range: [0,1000]
angle_src string | If initialized, provides an int-AC vari-
able of steering index.
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

11.6 transducers

Signal level calibration plugin.

11.6.1 Detailed description

Some plugins in the MHA expect the input signal to be calibrated to sound pressure level in
Pascal. This plugin converts AD and DA converter levels to SPL in Pa and also allows for a FIR
filters for mircophone and receiver equalization.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

11.6 transducers

109

A schematic calibration rule for the MHA

1. Measure frequency response of hearing aid microphones and receiver.

2. Create FIR filter coefficients for frequency response equalization for microphones and

receiver, configure the FIR coefficients of this plugin correspondingly.

3. Play an acoustic reference signal of a known SPL level to the microphone, adjust the
‘calib_in.peaklevel variable until the internal level meter (e.g. rmslevel, p. 136) shows the
same level.

4. Create a test tone in the MHA (e.g. with 'noise’, p. 165, or ’sine’, p. 168) of a given level,
and adjust the variable 'calib_out.peaklevel’ until the same acoustic level is measured at

the receiver.

Besides the signal calibration, this plugin also contains a soft-limiter in the output path, and
a quantization module. The soft-limiter acts as a fast broadband compressor, and can be
configured correspondingly. The quantisation module limits the signal to the interval [—1, 1] and
optionally reduces the resolution, by this quantization rule:

y = floor(2N =Y z)2=(N=1)

N is the number of bits, z the input signal and y the output signal.

11.6.2 Supported domains

The MHA plugin t ransducers supports these signal domains:

» waveform to waveform

11.6.3 Plugin Tags

filter limiter calibration level-meter

11.6.4 Configuration variables

Name Type | Description Default
mhaconfig_in | parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
plugin_name string | Plugin name

calib_in parser | calibration module (see below)
calib_out parser | calibration module (see below)

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

110 CONTENTS
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser calib_in:

Name Type Description Default
mhaconfig_in | parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
nbits int Number of bits to simulate, or zero for | 0
limiting only
Range: [0,32]
fir matrix<float> | FIR filter coefficients, one row for each | [[]]
channel
peaklevel vector<float> | Reference peak level in dB (0 dB FS | []
corresponds to this SPL level)
speechnoise parser (see below)
tau_level float Time constant in seconds for RMS | 0.125
level meter
Range:]0,10]
rmslevel vector<float> | RMS level in dB at input (after calibra- | (monitor)
tion or addition of noise)
config parser (see below)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

11.6 transducers 111
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser speechnoise:
Name Type Description Default
mode keyword_list | Playback mode and level of speech | off
shaped noise
Range: [off on olnoise
LTASS combined LTASS female
LTASS_male white pink brown
TEN_SPL TEN_SPL_250_8k
TEN_SPL_50_16k sin125 sin250
sin500 sin1k sin2k sin4dk sin8k]
level float Test signal level in dB SPL 80
Range: [0,120]
channels | vector<int> | Channels where to playb speech noise | []
signal
Range: [0,]
Variables of sub-parser config:
Name Type | Description Default
srate float | Actual sampling rate / Hz (monitor)
fragsize int Actual fragment size / samples (monitor)
channels | int Actual number of channels (monitor)
Variables of sub-parser calib_out:
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
speechnoise parser (see below)
peaklevel vector<float> | Reference peak level in dB (0 dB FS | []
corresponds to this SPL level)
fir matrix<float> | FIR filter coefficients, one row for each | [[]]
channel
softclip parser "Hardware’ softclipper (see below)
nbits int Number of bits to simulate, or zero for | 0
limiting only
Range: [0,32]
do_clipping bool Will the soft/ hard clipping be executed | no
tau_level float Time constant in seconds for RMS | 0.125
level meter
Range:]0,10]
rmslevel vector<float> | RMS level in dB at output (before cali- | (monitor)
bration or addition of noise)
config parser (see below)

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

CONTENTS

112
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser speechnoise:
Name Type Description Default
mode keyword_list | Playback mode and level of speech | off
shaped noise
Range: [off on olnoise
LTASS combined LTASS female
LTASS_male white pink brown
TEN_SPL TEN_SPL_250_8k
TEN_SPL_50_16k sin125 sin250
sin500 sin1k sin2k sin4k sin8K]
level float Test signal level in dB SPL 80
Range: [0,120]
channels | vector<int> | Channels where to playb speech noise | []
signal
Range: [0,]
Variables of sub-parser softclip:
Name Type | Description Default
tau_attack float attack filter time constant / s 0.002
Range: [0,]
tau_decay float | decay filter time constant /s 0.005
Range: [0,]
threshold float | startpointon linear scale (hard clipping | 0.6
at1.0)
Range: [0,]
hardlimit float hard limit 1
Range: 10,]
slope float | compression factor 0.5
Range: [0,1]
linear bool input/output function is linear on linear | no
(yes) or logarithmic (no) scale
tau_clip float | clipping meter time constant /s 1
Range: [0,]
clipped float | clipped ratio (monitor)
max_clipped | float | maximum allowed clipped ratio 1
Range: [0,1]

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

12 Plugin category ’filterbank’ 113

Variables of sub-parser config:

Name Type | Description Default
srate float | Actual sampling rate / Hz (monitor)
fragsize | int Actual fragment size / samples (monitor)
channels | int Actual number of channels (monitor)

12 Plugin category ‘filterbank’

12.1 fftfbpow

FFT based filterbank analysis with overlapping filters

12.1.1 Detailed description

This plugin implements a filterbank based on FFT spectrum. The power in each filter bank
channel is calculated and stored into an AC variable. The input signal is passed through un-
modified.

For details on the filter shapes, please see description of plugin £ftfilterbank (section 12.2
on page 115).

12.1.2 Supported domains

The MHA plugin £ ft fbpow supports these signal domains:

* spectrum to spectrum

12.1.3 Plugin Tags

filterbank feature-extraction level-meter

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

CONTENTS

12.1.4 Configuration variables

Name Type Description Default

mhaconfig_in parser Input configuration (see below)

mhaconfig_out parser Output configuration (see below)

unit keyword_list Frequency unit Hz
Range: [Hz kHz Oct Oct/3 Bark Erb
ERB_Glasberg1990]

f vector<float> | Frequencies 1

f hz vector<float> | Frequencies in Hz (monitor)

fscale keyword_list frequency scale of filter bank linear
Range: [linear bark log erb
ERB_Glasberg1990]

ovltype keyword_list filter overlap type rect
Range: [rect linear hanning exp gauss]

plateau float relative plateau width 0
Range: [0,1]

ftype keyword_list frequency entry type center
Range: [center edge]

normalize bool normalize broadband output amplitude | no

fail_on_nonmonotonic bool Fail if frequency entries are non- | yes
monotonic (otherwise sort)

fail_on_unique_bins bool Fail if center frequencies share the | yes
same FFT bin.

flag_allow_empty_bands | bool Set true to allow bands where all STFT- | no
bin-gains equal zero.

cf vector<float> | final center frequencies in Hz (monitor)

ef vector<float> | final edge frequencies in Hz (monitor)

cLTASS vector<float> | Bandwidth level correction for LTASS | (monitor)
noise in dB

shapes matrix<float> | Frequency band shapes (monitor)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

12.2 fitfilterbank 115

12.2 fitfilterbank

FFT based filterbank with overlapping filters

12.2.1 Detailed description

This plugin implements a linear phase filterbank based on FFT spectrum. Each filter bank
channel is stored into an own audio channel. The number of output channels of this plugin is
the number of frequency bands times the number of input channels.

Please use the iFFT plugin spec2wave (p. 171) to get the waveform signal of the filterbank
output. The matrixmixer (p. 59) plugin or combinechannels (p. 51) can be used for resynthesis.

The filters are calculated by applying filter weights to each FFT bin. These weights (filter
shapes) depend on the settings of the ftype variable. If center is selected, the frequency
interval between the lower neighbour center frequency and the desired center frequency is
mapped to the interval [-1,0] and between the desired center frequency and the upper neight-
bour to the interval [0,1]. These mappings are linear on the given frequency scale so that a
value of 0.5 denotes the middle between two neighboured center frequencies on the given fre-
quency scale. The filter weights are calculated with the configured crossing function on this
interval, see next figure for details. Please note that the filters are not necessarily symmetric
(symmetry is achieved only if the center frequencies are equally spaced on the desired fre-
quency scale). The lowest and highest filter channels include the full range from zero to the
center frequency or from the center frequency to the nyquist frequency, respectively.

If edge is selected, then the frequency axis is transformed to be linear on the desired frequency
scale. The interval between two edge frequencies is mapped to [-0.5,0.5]. Now, the filter shape
function (rectangular, linear/sawtooth, hanning) is applied to the frequency axis. This results in
symmetric filters on the desired frequency scale.

i . .
- 0.5 -plateawz 0 plateau2 05

Figure 6 Schematic plot of overlapping filters

12.2.2 Supported domains
The MHA plugin fftfilterbank supports these signal domains:

» waveform to waveform

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

116 CONTENTS

symmetry on linear scale symmetry on log scale

linear

4 8 12 16 20k 4 8 12 16 20k
frequency / Hz frequency / Hz

Figure 7 Example filter shapes with center frequencies configured

symmetry on linear scale symmetry on log scale

linear

4 8 12 16 20k 4 8 12 16 20k
frequency / Hz frequency / Hz

Figure 8 Example filter shapes with edge frequencies configured

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

12.2 fitfilterbank

117

12.2.3 Plugin Tags

filterbank

12.2.4 Configuration variables

Name Type Description Default

mhaconfig_in parser Input configuration (see below)

mhaconfig_out parser Output configuration (see below)

unit keyword_list Frequency unit Hz
Range: [Hz kHz Oct Oct/3 Bark Erb
ERB_Glasberg1990]

f vector<float> | Frequencies 1

f hz vector<float> | Frequencies in Hz (monitor)

fscale keyword_list frequency scale of filter bank linear
Range: [linear bark log erb
ERB_Glasberg1990]

ovitype keyword_list filter overlap type rect
Range: [rect linear hanning exp gauss]

plateau float relative plateau width 0
Range: [0,1]

ftype keyword_list frequency entry type center
Range: [center edge]

normalize bool normalize broadband output amplitude | no

fail_on_nonmonotonic bool Fail if frequency entries are non- | yes
monotonic (otherwise sort)

fail_on_unique_bins bool Fail if center frequencies share the | yes
same FFT bin.

flag_allow_empty_bands | bool Set true to allow bands where all STFT- | no
bin-gains equal zero.

cf vector<float> | final center frequencies in Hz (monitor)

ef vector<float> | final edge frequencies in Hz (monitor)

cLTASS vector<float> | Bandwidth level correction for LTASS | (monitor)
noise in dB

shapes matrix<float> | Frequency band shapes (monitor)

fftlen int FFT length of filterbank (affects time | 128
domain only)
Range: [2,]

phasemodel keyword_list Phase model (affects time domain | linear
only)
Range: [minimal linear]

irswnd parser IRS window function (affects time do- | (see below)
main only)

return_imag bool Return imaginary part? Re- | no

sults are stored in AC variable

‘<plugname>_imag’.

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

118 CONTENTS

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser irswnd:

Name | Type Description Default

type keyword_list Window type. hanning

Range: [rect hanning hamming black-
man bartlett user]

user vector<float> | User provided window (used if window | []
type==user).

12.3 gtfb_analyzer

Gammatone Filterbank Analyzer

12.3.1 Detailed description

Implements a complex-valued gammatone filterbank using cascaded first-order filters as de-
scribed in Hohmann(2002)°, and Herzke and Hohmann(2007)8. Set the parameter order to
the desired gammatone filter order. The coeff is a vector of complex filter coefficients, one for
each filterbank frequency band. The complex coefficients need to be computed outside of the
MHA, e.g. with the help of the matlab implementation of the gammatone filterbank which can
be downloaded from https://uol.de/mediphysik/downloads/. Similarly, the combination of nor-
malization factors and phases also have to be computed outside of the MHA, e.g. also with the
same matlab implementation of this gammatone filterbank.

The output signal produced by this plugin contains the complex output signal produced by the
cascaded gammatone filters in each band. Because the MHA time domain signal representa-
tion does not support storing of complex values, real and imaginary parts are stored in different
output channels.

Example: |If the input has 2 channels (chO, ch1), and gtfb_analyzer splits into 3
bands (b0, b1, b2), then the order of output channels produced by gtfb_analyzer
is: ch0_b0_real, ch0_b0_imag, ch0_b1_real, ch0_b1_imag, ch0_b2 real, ch0_b2_ imag,
ch1_b0_real, ch1_b1_imag, ch1_b1_real, ch1_b1_imag, ch1_b2_real, ch1_b2_imag

Attention:

The recursive low-pass filters in this plugin have no protection against subnormals. In real-time
processing tasks, input signal of absolute silence (amplitude 0.0) must therefore be avoided.
The noise plugin can be used for this purpose, by adding inaudible noise to the signal that
enters this plugin.

SVolker Hohmann, Frequency analysis and synthesis using a Gammatone filterbank. Acta Acustica united with
Acustica 88(3), pp. 433-442, 2002.

®Tobias Herzke and Volker Hohmann, Improved Numerical Methods for Gammatone Filterbank Analysis and
Synthesis. Acta Acustica united with Acustica 93(3), pp. 498-500, 2007.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

12.4 gtfb_simd

119

12.3.2 Supported domains

The MHA plugin gt fb_analyzer supports these signal domains:

« waveform to waveform

12.3.3 Plugin Tags

filterbank

12.3.4 Configuration variables

Name

Type

Description

Default

mhaconfig_in

parser

Input configuration

(see below)

mhaconfig_out

parser

Output configuration

(see below)

Range: [0,]

coeff vector<complex> | Filter coefficients of gammatone filters | []

norm_phase vector<complex> | Normalization & phase correction fac- | []
tors

order int Order of gammatone filters 4

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

12.4 gtfb_simd

Gammatone Filterbank Analyzer

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

120

CONTENTS

12.4.1 Detailed description

gtfb_simd implements the same gammatone filterbank as plugin gtfb_analyzer. The gamma-
tone filtering is performed using built-in vector operations of x86.The total number of bands

(audio channels x filterbank frequencies) has to bea multiple of 4.

This plugin should be regarded as a proof-of-concept how Single-Instruction-Multiple-Data
(SIMD) can be used inside openMHA. For practical gammatone filtering applications, the plug-

ins gtfb_analyzer and gtfb_simple_bridge should be used instead.

12.4.2 Supported domains

The MHA plugin gt fb_simd supports these signal domains:

» waveform to waveform

12.4.3 Plugin Tags

filterbank

12.4.4 Configuration variables

Name Type Description Default
mhaconfig_in | parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
coeff vector<complex> | Filter coefficients of gammatone filters | []
norm_phase vector<complex> | Normalization & phase correction fac- | []

tors
order int Order of gammatone filters 4

Range: [0,[

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

12.5 gtfb_simple_bridge 121

12.5 gtfb_simple_bridge

Simple gammatone filterbank

12.5.1 Detailed description

Simple gammatone filterbank plugin. Computes complex-valued gammatone filterbank signal
from the real-valued broad-band signal, processes the filterbank signal with the plugin loaded
via plugin_name, and resynthesizes the output signal again to a real-valued broadband output
signal.

The signal in each band can be restricted to the respective frequency band by applying addi-
tional gammatone filter stages to the output signal of the loaded plugin.

Gammatone filterbank is implemented after Hohmann 2002 and produces complex-valued an-
alytic output in each frequency band. Frequency bands are presented as audio channels to the
loaded plugin. The order of bands is: All bands created from the first input channel form the
first nbands audio channel, followed by all bands created from the second input channel, etc.

Real and imaginary signal are presented separately to the loaded plugin: The real part is trans-
ferred as the regular MHA audio input signal, while the imaginary part is transferred through
an AC variable with the same name as the configured name of this filterbank plugin with string
"_imag" appended.

This plugin does not support changing the configuration at run time.

This plugin creates the following AC variables during preparation:

gtfb_simple_bridge_imag waveform matrix, contains the imaginary part of the filtered signal
to be processed by the loaded plugin in-place. Size: (fragsize x channels*bands)

gtftb_simple_bridge_cf vector containing the center frequencies of the gammatone filter
bands in Hz. Size: (1 x bands)

gtftb_simple_bridge_bw vector containing the bandwidths of the gammatone filter bands in
Hz. Size: (1 x bands)

gtfb_simple_bridge_cLTASS vector containing negative LTASS correction values in dB for
the gammatone filter bands. Size: (1 x channels*bands)

gtfb_simple_bridge_resyncgain vector containing the per-band resynthesis gains computed
by the Hohmann 2002 method (linear factors, applied during resynthesis). Size: (1 x
channels*bands)

If the plugin is assigned a different name than gtfb_simple_bridge, then the first parts of the
above AC variable names change accordingly.

This plugin can make use of an AC variables with the name given to configutation variable
element_gain_name: It expects a real matrix with size (fragsize x channels*bands). If this
name is given, then the values given in this matrix are multiplied element-wise with the real and
imaginary output signals of the loaded plugin before the filterbank resynthesis is performed.

If the plugin which processes the filterbank signal modifies the real part of the signal, then it
should also modify the imaginary part in the same way (e.g. apply same amplification factors).
The imaginary part of the signal must be modified in-place, by modifying the values inside the
AC variable, and not by creating an altered copy.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

122

CONTENTS

12.5.2 Supported domains

The MHA plugin gt fb_simple_bridge supports these signal domains:

» waveform to waveform

12.5.3 Plugin Tags

filterbank

12.5.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
plugin_name string Plugin name
unit keyword_list Frequency unit Hz
Range: [Hz kHz Oct Oct/3 Bark Erb
ERB_Glasberg1990]
f vector<float> | Frequencies 1
f hz vector<float> | Frequencies in Hz (monitor)
bw vector<float> | Bandwidth 1
Range: 10,]
bw_hz vector<float> | Bandwidth in Hz (monitor)
order int Filterbank order 4
Range: [1,]
prestages int Number of stages to be processed be- | 3
fore the plugin
Range: [0,]
desired_delay int Desired delay in samples 0
Range: [0,]
element_gain_name | string Name of element wise gain AC variable
(looked up during waveform process,
can be empty)
cLTASS vector<float> | Vector of band-specific negative | (monitor)
LTASS level correction values in dB: Of
a broadband LTASS signal with level
X dB, X+cLTASS dB will fall into each
band of the gammatone filterbank
resynthesis_gain vector<float> | Linear gains for resynthesis. (monitor)
gf_internals string internal coefficients of the gammatone | (monitor)
filterbank

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

12.6 multibandcompressor 123

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)

12.6 multibandcompressor

Multiband compressor framework based on level in overlapping filter bands.

12.6.1 Detailed description

multibandcompressor provides a complete framework for dynamic range compression in multi-
ple frequency bands.

It contains the same filterbank as the fftfilterbank plugin (see there for documentation of the
filterbank) and combines the frequency bands again after the compression.

For the actual dynamic range compression, multibandcompressor can load any other plugin
using the field plugin_name. Common choices for this plugin would be dc_simple or dc.

Note that the dynamic range compression receives a pseudo time signal where the sampling
rate is the rate of the block processing, i.e. in each channel and band, there is exactly 1
signal sample for every block. These samples are a sparse, non-negative representation of
the actual signal in the respective frequency band: The magnitude of each sample is chosen
by multibandcompressor so that the level computed from this sparse signal is the same as the
level computed from the full signal for this frequency band.

The dynamic range compression will then apply gain (or attenuation) to the sparse signal in
each frequency band. The gain applied to the sparse signal is measured by multibandcom-
pressor and eventually applied to the respective full signal.

Before the compressor gain is applied to the full signal, it may be modified by the after-burner
built into the multibandcompressor plugin (sub-parser ’burn’): The purpose of the after-burner
is to enforce a configurable Maximum Power Output (MPO) for each frequency band, and to
compensate for drains and confluxes of sound energy through vents and open fittings. Note
that compensating for drains in this way can easily lead to feedback howling and should be
done with caution. The after-burner can be disabled by setting burn.bypass=yes.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

124

CONTENTS

12.6.2 Supported domains

The MHA plugin multibandcompressor supports these signal domains:

* spectrum to spectrum

12.6.3 Plugin Tags

filterbank compression feature-extraction level-modification level-meter

12.6.4 Configuration variables

Name Type Description Default

mhaconfig_in parser Input configuration (see below)

mhaconfig_out parser Output configuration (see below)

unit keyword_list Frequency unit Hz
Range: [Hz kHz Oct Oct/3 Bark Erb
ERB_Glasberg1990]

f vector<float> | Frequencies 1

f hz vector<float> | Frequencies in Hz (monitor)

fscale keyword_list frequency scale of filter bank linear
Range: [linear bark log erb
ERB_Glasberg1990]

ovitype keyword_list filter overlap type rect
Range: [rect linear hanning exp gauss]

plateau float relative plateau width 0
Range: [0,1]

ftype keyword_list frequency entry type center
Range: [center edge]

normalize bool normalize broadband output amplitude | no

fail_on_nonmonotonic bool Fail if frequency entries are non- | yes
monotonic (otherwise sort)

fail_on_unique_bins bool Fail if center frequencies share the | yes
same FFT bin.

flag_allow_empty_bands | bool Set true to allow bands where all STFT- | no
bin-gains equal zero.

cf vector<float> | final center frequencies in Hz (monitor)

ef vector<float> | final edge frequencies in Hz (monitor)

cLTASS vector<float> | Bandwidth level correction for LTASS | (monitor)
noise in dB

shapes matrix<float> | Frequency band shapes (monitor)

plugin_name string Plugin name

burn parser (see below)

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

13 Plugin category ’io’ 125
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser burn:
Name | Type Description Default
f vector<float> | Sample frequencies of data / Hz. [1000]
Range: [0,]
drain vector<float> | Drain caused by vent / dB. [0]
conflux | vector<float> | Conflux caused by vent / dB. [-120]
maxgain | vector<float> | Maximum allowed gain / dB. [80]
mpo vector<float> | Maximum allowed output level / dB | [120]
SPL (see notes in plugin doc).
taugain | float Time constant of afterburn gain modi- | 0.2
fier lowpass / s.
Range: [0,]
commit | keyword_list Commit changes of configuration vari- | commit
ables.
Range: [commit]
bypass bool Bypass afterburn stage. no

13 Plugin category ’io’

13.1 MHAIODummy

Dummy client

13.1.1 Detailed description

Dummy client

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

126 CONTENTS

13.1.2 Supported domains

The MHA plugin MHATODummy supports these signal domains:

» waveform to waveform

13.1.3 Plugin Tags

io

13.2 MHAIOFile

Sound file 10 client.

Read from input files and write to files of same format.

13.2.1 Detailed description

The plugin 'MHAIOFile’ provides file to file processing with openMHA. It uses libsndfile to read
from and write to sound files. Input and output file name can be configured. After the openMHA
host application is started (cmd=start), the whole input file will be processed and the processed
data will be written to the output file. The start command will block until the processing is
finished. The files are opened when preparing the openMHA host application and closed when
releasing the openMHA host application. The output file format is inherited from the input file
and the data format of the output file is set by the output_sample_format. By default the format
of the input file is also used for the output file, e.g. if the input file is a 32 bit WAVE file, the
output file will also be 32-bit WAVE. The plugin supports most commonly used file formats.
Nota bene: When writing to WAVE files in integer formats, MHAIOFile clips all values above
+1.0 and below -1.0. To avoid clipping use floating point WAVE files.

13.2.2 Supported domains

The MHA plugin MHATOF i 1e supports these signal domains:

« waveform to waveform

13.2.3 Plugin Tags

io

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

13.3 MHAIOJack 127
13.2.4 Configuration variables

Name Type Description Default

in string Input sound file name

out string Output sound file name

output_sample_format | keyword_list | Output sample format, or input’ to copy | input
from input file
Range: [input Signed_8_bit_ PCM
Signed_16_bit_ PCM
Signed_24_bit PCM
Signed_32_bit PCM Un-
signed_8 bit PCM 32_bit_float
64_bit_float U-Law A-Law
IMA_ADPCM Microsoft ADPCM
GSM_6.10 32kbs_G721_ADPCM
24kbs_G723_ADPCM
40kbs_G723_ADPCM 12_bit DWVW
16_bit_ DWVW 24 _bit DWVW
VOX_ADPCM 16kbs_NMS_ADPCM
24kbs NMS_ADPCM
32kbs_NMS_ADPCM 16_bit. DPCM
8 bit DPCM Vorbis Opus
16_bit_ALAC 20_bit_ALAC
24 _bit_ ALAC 32_bit_ALAC]

startsample int First sample to be processed. 0
Range: [0,]

length int Number of samples to be processed by | 0
one start command, or zero for all.
Range: [0,]

strict_channel_match | bool Require same channel count in MHA | yes
and sound file.

strict_srate_maitch bool Require same sample rate in MHA and | yes
sound file.

13.3 MHAIOJack

JACK client

13.3.1 Detailed description

JACK client

13.3.2 Supported domains

The MHA plugin MHATIOJack supports these signal domains:

« waveform to waveform

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

128

CONTENTS

13.3.3 Plugin Tags

io

13.3.4 Configuration variables

Name Type Description Default
servername | string Name of JACK server default
name string Name of JACK client MHA
con_in vector<string> | Connections for input ports 1
delays_in vector<int> Input delay in samples as reported by | (monitor)
JACK. Only valid after prepare.
con_out vector<string> | Connections for output ports 1
delays_out | vector<int> Output delay in samples as reported by | (monitor)
JACK. Only valid after prepare.
names_in vector<string> | Names of input ports (empty for auto- | []
matic names)
names_out | vector<string> | Names of output ports (empty for auto- | []
matic names)
ports parser Jack ports (see below)
state parser Jack state. (see below)
Variables of sub-parser ports:
Name Type Description Default
physical_inputs | vector<string> | Physical (hardware) input ports (monitor)
physical outputs | vector<string> | Physical (hardware) output ports (monitor)
all_inputs vector<string> | All input ports (software/hardware) (monitor)
all_outputs vector<string> | All output ports (software/hardware) (monitor)

Variables of sub-parser state:

Name Type | Description Default

Xruns int Number of xruns since first connection | (monitor)
of MHA to jack.

cpuload float Current CPU load in Jack. (monitor)

priority int Jack thread priority. (monitor)

scheduler | string | Jack thread scheduler model. (monitor)

13.4 MHAIOJackdb

JACK client

13.4.1

JACK client

Detailed description

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

13.4 MHAIOJackdb

129

13.4.2 Supported domains

The MHA plugin MHATOJackdb supports these signal domains:

« waveform to waveform

13.4.3 Plugin Tags

io

13.4.4 Configuration variables

Name Type Description Default
servername string Name of JACK server default
name string Name of JACK client MHA
con_in vector<string> | Connections for input ports 1
con_out vector<string> | Connections for output ports 1
names_in vector<string> | Names of input ports (empty for auto- | []
matic names)
names_out vector<string> | Names of output ports (empty for auto- | []
matic names)
use_jack_transport bool Use jack transport for start/stop control | no
(changes after first start may result in
undefined behavior)
fail_on_async_jackerr | bool Should MHA fail to operate if jack re- | yes
ports asynchronouos errors?
locate float jack transport locate command (time in | 0
seconds)
Range: [0,]
ports parser Jack ports (see below)
server_srate float Sampling rate of Jack server. (monitor)
server_fragsize int Fragment size rate of Jack server. (monitor)
state parser Jack state. (see below)
Variables of sub-parser ports:
Name Type Description Default
physical_inputs vector<string> | Physical (hardware) input ports (monitor)
physical outputs | vector<string> | Physical (hardware) output ports monitor

all_inputs

vector<string>

all_outputs

vector<string>

()
All input ports (software/hardware) (monitor)
All output ports (software/hardware) ()

monitor

Variables of sub-parser state:

Name Type | Description Default

Xruns int Number of xruns since first connection | (monitor)
of MHA to jack.

cpuload float | Current CPU load in Jack. (monitor)

priority int Jack thread priority. (monitor)

scheduler | string | Jack thread scheduler model. (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

130 CONTENTS

13.5 MHAIOParser

process data from parser input

13.5.1 Detailed description

The plugin 'MHAIOParser’ provides an interface between the configuration interface and the
mha processing i/0. The processing armed by issuing the cmd=start command, after that every
write access to io.input triggers the processing of the input by the processing framework. The
output of the audio processing is written into the output monitor variable.

13.5.2 Supported domains

The MHA plugin MHATOParser supports these signal domains:

» waveform to waveform

13.5.3 Plugin Tags

io

13.5.4 Configuration variables

Name | Type Description Default

input matrix<float> | input signal buffer (size: nchannels x | [[]]
fragsize)

output | matrix<float> | output signal buffer (monitor)

13.6 MHAIOPortAudio

MHA 1O library for portaudio V19 backend

13.6.1 Detailed description

MHA 1O library for portaudio V19 backend

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

13.6 MHAIOPortAudio

131

13.6.2 Supported domains

The MHA plugin MHATOPortAudio supports these signal domains:

« waveform to waveform

13.6.3 Plugin Tags

io

13.6.4 Configuration variables

Name Type

Description

Default

device_info parser

PortAudio’s information about the
sound devices present on this system

(see below)

stream_info parser

PortAudio stream info

(see below)

device_name_in string

Variable to load device by name. This
name has to match the portaudio
device name, exactly or as a sub-
string. Exact matches take precedence
over substring matches. Thereafter,
matches at lower device indices are
preferred. device_index_in will be up-
dated when a match is found.

default

device_index_in int

Variable to load device by index.
Upon setting device_index_in, de-
vice_name_in will be updated to the full
portaudio name of this device.

Range: [0,0]

device_name_out string

Variable to load device by name. This
name has to match the portaudio
device name, exactly or as a sub-
string. Exact matches take precedence
over substring matches. Thereafter,
matches at lower device indices are
preferred. device_index_out will be up-
dated when a match is found.

default

device_index_out int

Variable to load device by index.
Upon setting device_index_out, de-
vice_name_out will be updated to the
full portaudio name of this device.
Range: [0,0]

suggested_input_latency | float

The desired input latency in seconds.
Range: [0,]

suggested_output_latency | float

The desired output latency in seconds.
Range: [0,]

Variables of sub-parser device_info:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

132 CONTENTS

Name Type Description Default

numDevices int Number of sound devices on system | (monitor)
as recognized by PortAudio v19

structVersion vector<int> PortAudio has no documentation for | (monitor)
this field

name vector<string> | PortAudio has no documentation for | (monitor)
this field

hostApi vector<int> The type wused to enumerate | (monitor)
to host APls at runtime. Val-
ues of this type range from 0 to
(Pa_GetHostApiCount()-1).

maxInputChannels vector<int> PortAudio has no documentation for | (monitor)
this field

maxQOutputChannels vector<int> PortAudio has no documentation for | (monitor)
this field

defaultLowlnputLatency vector<float> Default latency values for interactive | (monitor)
performance. Time values in seconds.

defaultLowOutputLatency | vector<float> PortAudio has no documentation for | (monitor)
this field

defaultHighInputLatency vector<float> Default latency values for robust non- | (monitor)
interactive applications. Time values in
seconds.

defaultHighOutputLatency | vector<float> PortAudio has no documentation for | (monitor)
this field

defaultSampleRate vector<float> PortAudio has no documentation for | (monitor)
this field

Variables of sub-parser stream_info:

Name

Type

Description

Default

palnputLatency

float

The input latency of the stream in
seconds. This value provides the
most accurate estimate of input la-
tency available to the implementa-
tion. It may differ significantly from
the suggestedLatency value passed to
Pa_OpenStream(). The value of this
field will be zero (0.) for output-only
streams.

(monitor)

paOutputLatency

float

The output latency of the stream in
seconds. This value provides the
most accurate estimate of output la-
tency available to the implementa-
tion. It may differ significantly from
the suggestedLatency value passed to
Pa_OpenStream(). The value of this
field will be zero (0.) for input-only
streams.

(monitor)

paSampleRate

float

The sample rate of the stream in Hertz
(samples per second). In cases where
the hardware sample rate is inaccu-
rate and PortAudio is aware of it, the
value of this field may be different from
the sampleRate parameter passed
to Pa_OpenStream(). If information
about the actual hardware sample rate
is not available, this field will have the
same value as the sampleRate param-
eter passed to Pa_OpenStream().

(monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

13.7 MHAIOTCP 133

13.7 MHAIOTCP

TCP 10-lib exchanges sound samples as interleaved binary float32 data in network-byte-order
(big endian) over a TCP connection

13.7.1 Detailed description

TCP 10-lib exchanges sound samples as interleaved binary float32 data in network-byte-order
(big endian) over a TCP connection

13.7.2 Supported domains

The MHA plugin MHATOTCP supports these signal domains:

» waveform to waveform

13.7.3 Plugin Tags

io

13.7.4 Configuration variables

Name Type | Description Default
server_port_open | int Status of local server port (monitor)
connected int Status of tcp connection (monitor)
peer_address string | IP address of remote computer (monitor)
peer_port int Remote tcp port of connection (monitor)
address string | Local address, determines interfaces 0.0.0.0
port int TCP Server Port for sound data ex- | 33338

change

Range: [0,65535]
debug_filename string | debug messages of MHAIOTCP will be

written to this file if non-empty

13.8 MHAIOQalsa

ALSA client

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

13.8.1

ALSA client

134

CONTENTS

Detailed description

13.8.2 Supported domains

The MHA plugin MHAIOalsa supports these signal domains:

» waveform to waveform

13.8.3 Plugin Tags

io

13.8.4 Configuration variables

Name Type Description Default
in parser (see below)
out parser (see below)
priority int Set SCHED_FIFO priority of process- | -1
ing thread or -1 for no realtime schedul-
ing
Range: [-1,99]
format keyword_list | PCM sample format S32 LE
Range: [S32_LE S16_LE]
link bool link PCM devices yes
alsa_start _counter | int alsa is started on startup and for every | (monitor)
dropout.

Variables of sub-parser in:

Name Type | Description Default

device string | device name of the alsa PCM device
for audio capture

nperiods | int number of periods in alsa buffer 2
Range: [2,]

Variables of sub-parser out:

Name Type | Description Default

device string | device name of the alsa PCM device
for audio playback

nperiods | int number of periods in alsa buffer 2
Range: [2,]

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

14 Plugin category ’level-meter’ 135

14 Plugin category ’level-meter’

14.1 levelmeter

Broadband level meter.

14.1.1 Detailed description

This level meter calculates the RMS level of the input signal in the last tau seconds.

14.1.2 Supported domains

The MHA plugin 1evelmeter supports these signal domains:

» waveform to waveform

14.1.3 Plugin Tags

level-meter compression

14.1.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
tau float RMS time constant/ s 0.1

Range: [0,]
mode keyword_list Level scale Pa

Range: [Pa FS]
rms vector<float> | RMS level / dB (monitor)
peak vector<float> | Peak level / dB (monitor)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

136 CONTENTS

14.2 rmslevel

This plugin measures block based levels. Results are published in monitor variables and in
these AC variables (replace 'rmslevel’ with the configured plugin name):

rmslevel_level_db rmslevel_peak_db rmslevel_level rmslevel_peak The ’peak’ variables are
only available during waveform processing.

14.2.1 Detailed description

This plugin computes the rms level and peak level of the current fragment and provides them as
AC and monitor variables rms level in W/m? and peak level in Pascal. The values are provided
in linear (variable names: level and peak) and logarithmic scale (level_db and peak_db). The
default unit for the logarithmic scale is dB(SPL), but conversion to dB(HL) as per ISO 389-
7:2005 (freefield) can be activated in the spectral domain. The correction values for frequencies
above 16 kHz are extrapolated.

14.2.2 Supported domains

The MHA plugin rmslevel supports these signal domains:

» waveform to waveform

* spectrum to spectrum

14.2.3 Plugin Tags

level-meter feature-extraction

14.2.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
unit keyword_list Use dB(SPL) or dB(HL) spl
Range: [spl hl]

level vector<float> | RMS level in W/m~2 (monitor)
level _db vector<float> | RMS level in dB (monitor)
peak vector<float> | peak amplitude in Pa (monitor)
peak_db vector<float> | peak amplitude in dB (monitor)

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

15 Plugin category ’level-modification’

137

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

15 Plugin category ’level-modification’

15.1 gain

Gain plugin:

Apply a gain to each channel

15.1.1 Detailed description

This plugin applies a configurable gain to each channel. The number of entries in the gain

vector must be either one per channel or 1 (same gains for all channels)

For security reasons, the gain is limited to the range given by min and max which are pre-
configured to -16dB and +16dB, respectively. Maximum and minimum gains are themselves
configurable and need to be adjusted before gains exceeding the range [-16,+16] can be set

through variables gains.

15.1.2 Supported domains

The MHA plugin gain supports these signal domains:

« waveform to waveform

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

138

CONTENTS

15.1.3 Plugin Tags

level-modification

15.1.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
min float Minimal gain in dB -16

Range: [,0]
max float Maximal gain in dB 16

Range: [0,]
gains vector<float> | Gainin dB [0]

Range: [-16,16]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

15.2

level_matching

Input level matching

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

15.2 level_matching 139

15.2.1 Detailed description

This plugin implements automatic pairwaise matching of input levels. This algorithm can be
used to e.g. compensate for microphone gain drift. Microphone gain matching relies on the
assumption that the input signal on both microphones has the same level. This assumption
breaks down if the mic distance is small compared to the sound wavelength. To exclude high
frequencies from the gain matching, if used in the time domain the signal is filtered by a lowpass
filter before the mismatch is calculated. In the spectral domain the user is responsible for the
restriction of the matching to sensible frequencies, e.g. by usage of a fft filterbank and careful
selection of channels for the matching algorithm. As gain drift usually happens on a time scale
large compared to the block size the mismatch is also lowpass filtered. Currently this plugin
can only match pairs of microphones. The microphone pairings are passed as a matrix, with
each row containing the indices of two microphones. The first entry is taken as reference mic.
Its signal will not be changed. The signal of the other microphone will be scaled so that the
average rms levels match.

15.2.2 Supported domains

The MHA plugin 1level_matching supports these signal domains:

« waveform to waveform

« spectrum to spectrum

15.2.3 Plugin Tags

level-modification

15.2.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
channels matrix<int> | channels [[01]]
Ip_signal_fpass | float Upper edge of the Ip pass band for the | 4000

signal in Hz

Range: [0,[
Ip_signal_fstop | float Stop band lower edge frequency for the | 8000

signal in Hz

Range: [0,]
Ip_level_tau float Low pass time constant for the mis- | 1

match in s

Range: [0,]
range float Maximum matching range in dB 4

Range: [0,[

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

140 CONTENTS

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

15.3 smoothgains_bridge

Gain smoothing for reduction of filter length

15.3.1 Detailed description

The overlap-add framework allows finite impulse response filter lengths up to the zero padding
length. Longer filters will result in artifacts caused by circular aliasing. Artifacts can be reduced
by either applying Hanning ramps to the zero-padded blocks after filtering, or by shortening
the impulse response of the filter, thereby implicitely reducing the frequency resolution. This
plugin reduces the filter length to match exactly the zero-padding length. It can either keep the
phase (mode=linear_phase), and reduce causal and a-causal parts of the impulse response, or
apply a minimum phase filter phase, and cut the causal part of the filter. The window position
in the overlap-add framework has to be configured appropriately: For linear phase mode, a
symmetric window position is required, i.e., wnd.pos=0.5. To allow minimal phase filters, an
asymmetric window position (wnd.pos=0) is needed. Using minimal phase filters will destroy
the phase, but reduces the algorithmic delay. Using a minimal phase can lead to undesired
interference between subsequent overlapping synthesized frames, also introducing unwanted
sound artifacts. It should only be used if the filter applied in the STFT domain does not change
or only changes very slowly.

15.3.2 Supported domains

The MHA plugin smoothgains_bridge supports these signal domains:

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

15.3 smoothgains_bridge 141
15.3.3 Plugin Tags
level-modification filter data-flow overlap-add
15.3.4 Configuration variables
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
plugin_name string Plugin name
mode keyword_list | Gain smoothing mode linear_phase
Note: Appropriate settings of window
position are required (linear_phase:
0.5, minimal_phase: 0)
Range: [off linear_phase mini-
mal_phase]
irswnd parser Impulse response window function (see below)
epsilon float Epsilon for safe division by zero (avoid | 1e-18
inf)
Range: [1.1e-19,]
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser irswnd:
Name | Type Description Default
type keyword_list Window type. hanning
Range: [rect hanning hamming black-
man bartlett user]
user vector<float> | User provided window (used if window | []
type==user).

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

142 CONTENTS

16 Plugin category 'math’

16.1 acTransform_wave

Transform Plugin Between Coordinate Systems for Waveforms

16.1.1 Detailed description

This plugin transforms a waveform in the AC space from one coordinate system into another.
For this it receives an angle also saved in the AC space. Then, the plugin rotates the axes into
the direction of the given angle.

16.1.2 Supported domains

The MHA plugin acTransform_wave supports these signal domains:

« waveform to waveform

16.1.3 Plugin Tags

math linear-algebra

16.1.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out parser | Output configuration (see below)
ang_name string | This parameter has the name of the AC | head_ang
variable having the rotation angle
raw_p_name string | This parameter has the name of the AC | p
variable having the waveform to be ro-
tated
raw_p_max_name string | This parameter has the name of the | p_max

AC variable having the maximum of the
waveform to be rotated
rotated_p_name string | This parameter has the name of the AC | rotated_p
variable having the waveform after ro-
tation

rotated_p_max_name | string | This parameter has the name of the | rotated_p_max
AC variable having the maximum of the
waveform after rotation

numsamples int This parameter determines the length | 73
of the wave to be pooled in samples.
Range:]0,360]

to_from bool This parameter tells whether the rota- | yes
tion will be performed to the given an-
gle or from it

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

17 Plugin category 'noise-suppression’ 143

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

17 Plugin category 'noise-suppression’

17.1 noise_psd_estimator

Noise power estimator after Gerkmann (2012).

17.1.1 Detailed description

Noise power spectral density (PSD) estimator based on a cepstral-domain speech production
model using estimated speech presence probability.

The noise PSD estimate is stored into an AC variable with the same name as the plugin con-
figuration name.

Reference:

Timo Gerkmann, Richard C. Hendriks, "Unbiased MMSE-based Noise Power Estimation with
Low Complexity and Low Tracking Delay", IEEE Trans. Audio, Speech and Language Process-
ing, Vol. 20, No. 4, pp. 1383 - 1393, May 2012.

Patent:

Timo Gerkmann and Rainer Martin: "Method for Determining Unbiased Signal Amplitude Esti-

mates After Cepstral Variance Modification”, United States Patent US8208666B2, granted Jun.
2012.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

17.1.2 Supported domains

144

CONTENTS

The MHA plugin noise_psd_estimator supports these signal domains:

* spectrum to spectrum

17.1.3 Plugin Tags

noise-suppression feature-extraction adaptive

17.1.4 Configuration variables

Name Type | Description Default

mhaconfig_in parser | Input configuration (see below)

mhaconfig_out | parser | Output configuration (see below)

alphaPH1mean | float low pass filter coefficient for PH1Imean | 0.9
Range: [0,1]

alphaPSD float low pass filter coefficient for PSD 0.8
Range: [0,1]

q float a priori probability of speech presence | 0.5
Range: [0,1]

xiOptDb float optimal fixed a priori SNR for SPP esti- | 15
mation

Variables of sub-parser mhaconfig_in:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

17.2 smooth_cepstrum 145

17.2 smooth_cepstrum

Cepstral smoothing single-channel noise reduction

17.2.1 Detailed description

Single-channel noise reduction applying cepstral smoothing based on noise power spectral
density (PSD). The PSD must be provided by another plugin as an AC variable. The PSD
computed by the 'noise_psd_estimator’ plugin is compatible with this plugin. The name of the
AC variable to read the PSD can be changed in the parameter noisePow_name.

References:

Colin Breithaupt, Timo Gerkmann, Rainer Martin, "A Novel A Priori SNR Estimation Approach
Based on Selective Cepstro-Temporal Smoothing”, IEEE Int. Conf. Acoustics, Speech, Signal
Processing, Las Vegas, NV, USA, Apr. 2008.

Timo Gerkmann, Rainer Martin, "On the Statistics of Spectral Amplitudes After Variance Reduc-
tion by Temporal Cepstrum Smoothing and Cepstral Nulling", IEEE Trans. Signal Processing,
Vol. 57, No. 11, pp. 4165-4174, Nov. 2009.

Patent:

Colin Breithaupt, Timo Gerkmann, and Rainer Martin: "Spectral Smoothing Method for Noisy
Signals", European Patent EP2158588B1, granted Oct. 2010, Danish Patent DK2158588T3,
granted Feb. 2011, US Patent US8892431B2, granted Nov. 2014.

17.2.2 Supported domains

The MHA plugin smooth_cepstrum supports these signal domains:

- spectrum to spectrum

17.2.3 Plugin Tags

noise-suppression signal-enhancement adaptive

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

146

CONTENTS

17.2.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
xi_min_db float Minimum a priori SNR for a bin in | -27
dB(power)
Range: [-50,50]
fO_low float Lower limit for FO detection in Hz 70
Range: [0,400]
fO_high float Upper limit for FO detection in Hz 300
Range: [0,400]
delta_pitch float Quefrency half-width of pitch-set in | 2
samps
Range: [0,20]
lambda_thresh float Pitch detection threshold for smooth | 0.2
cepstrum in magnitude
Range: [0,3]
alpha_pitch float Alpha value to set for pitch range 0.15
Range: [0,4]
beta_const float AR coeff for smoothing of | 0.96
alphas(smoothing-factors)
kappa_const float Exponential bias correction constant | 0.2886
for a priori SNR estimate
Range: [0,1]
gain_min_db float Minimum gain in dB for a frequency bin | -17
Range: [-30,0]
win_f0 vector<float> | Window coefficients for cepstral | [0.0207 0.0656 0.1664 0.2473 0.2:
smoothing window
Range: [0,1]
alpha_const_vals vector<float> | Piecewise values for steady-state al- | [0.2 0.4 0.92]
phas
Range: [0,2]
alpha_const_limits_hz | vector<float> | Limits for steady-state alphas given in | [93.75 625]
Hz
Range: [0,10000]
noisePow_name string Name of est. noise spectrum in AC | noise_psd_estimator
space
spp parser Subparser for exporting SPP (see below)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

17.3 windnoise 147

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser spp:

Name Type | Description Default

prior_q float priorQ for computing GLR and SPP | 0.5
from local SNR
Range: [0,2]
xi_opt_db | float | xiOpt in dB for computing GLR and | 15
SPP from local SNR
Range: [0,40]

17.3 windnoise

This plugin detects which microphone channels are affected by wind noise and replaces their
signal with signal from unaffected channels.

17.3.1 Detailed description

The windnoise plugins smoothes power spectra over time and detects wind noise in the audio
by computing the ratio of sound energy at low frequencies with respect to the overall energy
in the smoothed power spectra. The presence of wind noise is then detected when this ratio
exceeds a configurable threshold criterium. This criterium as well as the cut-off frequency are
configurable, and may need to be adapted to the microphones used. Users can inspect the
monitor variable lowpass quotient which is also published as an AC variable for downstream
plugins to check the value of the low frequency energy ratio and derive a suitable threshold for
their acoustic configuration.

As an example for setting a suitable threshold, a voice sample was generated using an AKG
K-501 microphone with the waveform shown top of Fig. 9. Therefore, the value of LowPass-
Fraction needs to be 0.96 which translates to -0.3 dB in decibel scale and this value is set using
the configuration variable. With this set value, wind noise is correctly detected as can be seen
bottom of Fig. 9

Artificial test signals can be used to test the technical feature extraction performed by the wind-
noise algorithm: The low-the pass quotient can be influenced by adding low-frequency or high-
frequency sinusoids, and the smoothing over time of the power spectra can be observed by
introducing transient changes into an otherwise constant signal and then observing the ex-
tracted features over time. An artificial sine wave is generated as shown top of Fig. 10. A low
frequency signal (40 Hz) is followed by a high frequency (1 kHz) which is above the threshold
of 500 Hz. It can be observed in bottom of Fig. 10 how the Low pass ratio immediately drops
the moment a high frequency signal comes in, thereby not reducing speech intelligibility.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

148

CONTENTS

0s5F

05

085

09

085

0.8

0.8

06

0.4

0z

e

Gy

L
100000

200000

300000

400000

"
500000 600000

L
2000

4000

6000

8000 10000

0

Figure 9 Top: Waveform of t

L
2000

I
4000

L
6000

I
8000

10000

est file Middle: Low pass quotient generated from AC

varialbes. Bottom: Detected AC variable with windnoise showing as peaks.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

17.3 windnoise

149

0.5

0.5 M

10000 20000 30000

40000 50000 60000

|
08l
o8
1
[o

ost \

0.5

Figure 10 Top: Waveform of si

'
400

ne wave generated with 40 Hz at start and 1 kHz later.
Bottom: Low pass quotient AC variable.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

150

CONTENTS

17.3.2 Supported domains

The MHA plugin windnoise supports these signal domains:

* spectrum to spectrum

17.3.3 Plugin Tags

noise-suppression feature-extraction

17.3.4 Configuration variables

Name Type Description Default

mhaconfig_in parser Input configuration (see below)

mhaconfig_out parser Output configuration (see below)

UseChannel _LF_attenuation | bool switch for channelwise LF-attenuation | no
(yes=on, no=0ff)

tau_Lowpass float low-pass filter time constant for filtering | 1
spectral power /s
Range: [0,1]

LowPassCutOffFrequency float cut-off frequency of the spectral | 500
weighting windnoise detector
Range: [0,]

LowPassFraction float level difference threshold / dB between | -1
low and high band. If the level differ-
ence between low and high band ex-
ceeds this threshold in dB, then wind
noise is detected.

Range: [-10,10]

LowPassWindGain float Gain / dB applied to low frequency part | -10
when wind noise is detected and not
compensated signal replacement
Range: [-100,0]

WindNoiseDetector keyword_list type of windnoise detector to apply diffsum
Range: [psd diffsum msc none]

detected vector<int> windnoise detector state, one element | (monitor)
(with value 0 or 1) per audio channel

lowpass_quotient vector<float> | ratio of intensity at frequencies < Low- | (monitor)
PassCutOffFrequency to broadband
intensity as quotient of intensities af-
ter smoothing the power spectrum with
tau_Lowpass

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

18 Plugin category ’plugin-arrangement’

151

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

18 Plugin category ’plugin-arrangement’

18.1 altconfig

Alternative configurations for a plugin

18.1.1 Detailed description

This plugin loads another MHA plugin for signal processing when user assigns configuration
variable "plugin_name" and allows sending stored configuration commands to the loaded plugin
at run time by selecting one of the pre-configured alternative configuration commands. Users
can create names for an arbitrary number of alternative configurations by assigning a list of
names to configuration variable "algos". New configuration variables with these names are
then created by the plugin. Users can then store arbitrary configuration commands in these
new configuration variables. Execution of these configuration commands can later be triggered
by selecting them, i.e. assigning their name to configuration variable "select". The selected
configuration command will be executed in the context of the loaded plugin. Empty configuration

commands will be ignored.

18.1.2 Supported domains

The MHA plugin altconfig supports these signal domains:

» waveform to waveform

+ waveform to spectrum

» spectrum to waveform

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

18.1.3 Plugin Tags

152

CONTENTS

plugin-arrangement data-flow

18.1.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
plugin_name string Plugin name
algos vector<string> | List of names for plugin configura- | []

tions. Assigning names to algos cre-

ates configuration variables with the

given names which can be used to

store configuration commands for the

loaded plugin.
selectall bool Iterate through all configuration options | no

(for validation)
select keyword_list Select a configuration for parsing. As- | (none)

signing one of the names to select

causes execution of the configuration

command stored under that name in

the context of the loaded plugin.

Range: [(none)]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
18.2 altplugs

Configure alternative plugins.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

18.2 altplugs 153

18.2.1 Detailed description

The plugin altplugs allows configuration of alternative plugins. Plugins can either be regis-
tered en-bloc via the plugs variable or one by one by repeated assignment to the add vari-
able. Plugins can be removed via delete. Registered plugins are configured as sub parsers
of altplugs. The plugin to be used for processing can be selected via the select variable at
any time. If the plugin output is in the time domain the newly selected plugin can optionally be
faded in, ramplen controlling the ramp length, the old plugin is always switched off instanta-
neously. Any plugins can be used as alternative plugins, with the only limitations that input and
output domain and signal dimension is equal for all alternative plugins. Plugins can renamed
using the ":" operator.

A module for the mhacontrol graphical user interface is provided.

18.2.2 Supported domains

The MHA plugin altplugs supports these signal domains:

» waveform to waveform
+ waveform to spectrum
* spectrum to waveform

- spectrum to spectrum

18.2.3 Plugin Tags

plugin-arrangement data-flow

18.2.4 Configuration variables

Name Type Description Default
mhaconfig_in | parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
use_own_ac bool Use own AC space for each plug (yes), | no

or share parents space (no). Must be
set before plugs.

plugs vector<string> | List of plugins 1

add string Add a plugin into list

delete string Delete a plugin from list

ramplen float Ramp length in seconds 0
Range: [0,]

select keyword_list Select a plugin for processing (none)
Range: [(none)]

labels vector<string> | List of plugin labels. (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

154 CONTENTS

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

18.3 analysispath

Split-up of signal analysis and filtering, with asychronous processing of filter path and thread-
safe exchange of filter parameters as AC variables.

18.3.1 Detailed description

In many signal processing scenarios, the signal analysis requires larger block sizes and more
processing time than the filtering itself. If the filters do not change rapidly, the filter coefficients
can be processed independently from the filter process. This is realized in this plugin: A copy
of the input signal is stored in a double buffer, which is then processed asynchronously in a
thread with lower priority. At the same time, a snapshot of the AC space (or a subset of it) can
be transferred from the analysis thread to the main processing thread.

Please note that the AC variables which should be copied to the processing thread must exist
after the prepare() callback and should not change their size during run-time.

18.3.2 Supported domains

The MHA plugin analysispath supports these signal domains:

« waveform to waveform

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

18.3 analysispath

155

AC variables

D audio stream

filter algorithm

signal analysis

%E(]

Figure 11 Schematic signal flow in the analysis path scenario.

18.3.3 Plugin Tags

plugin-arrangement algorithm-communication data-flow

18.3.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
plugname string inner plugin name, receives adapted
fragment size
fragsize int fragment size of inner plugin 200
Range: [1,]
fifolen int length of double buffer in inner frag- | 10
ment size
Range: [1,]
priority int SCHED_FIFO priority (<0 for no real- | -1
time scheduling)
acvars vector<string> | Names of AC variables to be copied | []
back to processing thread (empty: all)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

156 CONTENTS

18.4 mhachain

MHA Chain

18.4.1 Detailed description

Load a sequence of plugins. During processing, the signal is passed from plugin to plugin, and
may change its domain or dimension.

If profiling is switched on, the cumulative time spent in the processing callback of each plugin
is stored in a monitor variable.

Plugins are loaded by assigning a vector of strings to the configuration variable algos. Each
entry in this vector has the form plugin <config_file, where

* pluginis the filename of the plugin without path or file extension,

. optionally assigns a different name to this instance of the plugin. This
is useful if multiple instances of the same plugin are loaded into different positions of
the processing chain. the colon and the are not specified, then the

defaults to plugin.

 <conlfig_file optionally specifies a configuration file with which the plugin is initially config-
ured. This is only needed when replacing a complete chain while the mha is performing
signal processing by reassigning algos.

The plugins loaded by assigning to configuration variable algos cause creation of sub-parsers
named like the in the mhachain plugin configuration and can be configured
through these sub-parsers.

18.4.2 Supported domains

The MHA plugin mhachain supports these signal domains:

» waveform to waveform
» waveform to spectrum
* spectrum to waveform

* spectrum to spectrum

18.4.3 Plugin Tags

plugin-arrangement data-flow

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

18.5 overlapadd 157

18.4.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
use_profiling bool Profile the loaded plugins. Needs to be | no

set to true before setting algos.
algos vector<string> | List of plugins to load and arrange in | []

a signal processing chain. Entries are
separated by spaces and given in the
order of the signal processing. Please
refer to the detailed description of this
plugin in the plugin manual for more
details.

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

18.5 overlapadd

Waveform to spectrum overlap add and FFT method.

Audio data is collected up to wndlen, then windowed by the given window function, zero
padded up to fftlength (symmetric zero padding or asymmetric zero padding possible), and
Fast-Fourier-transformed. The configuration variables are locked in the prepare call and must
be unlocked by release before a change is possible.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

158 CONTENTS

18.5.1 Detailed description

The plugin ’overlapadd’ transforms fragmented waveform audio data into short time Fourier
transformed (STFT) audio data. Both the forward and the inverse transform are performed.
Another plugin which processes the STFT spectra must be loaded by setting plugin_name.

The overlap-add mechanism is similar to that from Allen (1977): First the waveform signal is
windowed by a window function. The default window shape is the Hanning window, but other
pre-defined and user-defined window shapes can be selected. In each processing frame, the
window is shifted by the fragment size of the input waveform. Missing parts of the signal are
taken from the past. The windowed signal is padded with zeros on both sides up to the FFT
length to avoid aliasing when filters are applied in the frequency domain.” The zero padded
signal is then fast Fourier transformed. Parameters are FFT length IV, window length M and
the fragment size P. Typical values for the window length are M = 2P or M = 4P. The default
Hanning window is w1 (k) = 3(1 — cos(2rk/M)), the windowed signal is

with £ =0,..., M — 1 and the fragment index m.

After processing and inverse Fourier transformation, ramps can be applied to the signal to avoid
discontinuities in case of temporal aliasing, and thus reducing the artifacts. These ramps are
a applied to the zero-padding regions. The shape of the ramps is determined by the window
shape zerownd.type. Common choices are Hanning ramps or rectangular ramps (i.e. no ramps,
the default). This allows an exact reproduction in those cases where the local impulse response
of the filter (represented by all algorithms between FFT and inverse FFT) is shorter than the
zero padding length. The windowing in both stages of the overlap-add mechanism is shown in
Fig. 12 for M = 2P (50% overlap).

The total delay between input and output of a real-time system with fragment size P and an
overlap-add based linear-phase filter is the window length plus half the zero-padding length,
or M + (N — M)/2, plus an additional delay needed for the signal processing plus a delay
generated by the AD/DA converters (e.g., anti-aliasing filter delay). In an offline system, the
complete input signal is available in advance, and thus the delay of the overlap-add method is
determined only by the relative shift between output and input signal, which is (M + N)/2 — P
(equal to N/2 in case of 50% overlap, i.e. M = 2P). Contrary to a real-time system, the delay
of an offline system depends on the amount of overlap.

The spectral signal produced by this plugin is subject to the following scaling: The attenuation
effect on the level of applying the analysis window to the input signal is compensated by dividing
by the RMS (root mean square) of the window. To account for the zero-padding, which would
reduce the RMS of the signal block®, the signal is multiplied with |/fftlen/wndlen. Finally, the
forward FFT operation in the MHA will apply a factor 1/+/fftlen so that algorithms that compute
signal level do not have to know the fftlen, but can simply sum squared magnitudes of the STFT
bins to compute the RMS of the current block in Pascal.

The purpose of the scaling described in the previous paragraph is to enable spectral algorithms
to determine the physical level of the signal in the current STFT block without having to apply
correction factors for window shape, zero-padding, overlap, FFT length, etc.

"The impulse response of the applied filter can have the length of the zero padding; if the impulse response is
longer, later parts of the impulse response will be mapped to the beginning of the fragment (temporal aliasing). Lin-
ear phase filters (real gains in the frequency domain) produce symmetric impulse responses and therefore require
symmetric zero padding.

8The same sum of squared samples would be divided by fftlen instead of wndlen to compute the mean after
zero-padding.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

18.5 overlapadd 159

FFT length
I window length |
—fragment size—
zeros from history from input zeros
t=0
— fragment size —
+ ramps - I~ ramps -
to output

=0
Figure 12 Windowing in the overlap-add method with 50% overlap and zero-padding. In

the upper panel, the windowed input signal before applying the FFT is schematically
plotted. In the lower panel, the same time interval after inverse FFT is shown. The
shaded segment is the fragment which is read from the input stream (upper panel) and
written to the output stream (lower panel) in one processing cycle. The delay between
input and output signal is the length of leading zeros plus the window length.

—— FFT length = window length —
—fragment size—

from history, from input

to output .,

=0
Figure 13 Windowing in the overlap-add method, as in Fig. 12, but with post-windowing

and without zero-padding. In this setup, W is applied before FFT and W'~ is used for
post-windowing. The delay between input and output signal is the window length.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

160

CONTENTS

18.5.2 Supported domains

The MHA plugin overlapadd supports these signal domains:

» waveform to waveform

18.5.3 Plugin Tags

plugin-arrangement signal-transformation overlap-add

18.5.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out parser | Output configuration (see below)
plugin_name string | Plugin name
fftlen int FFT length 512
Range: [1,]
wnd parser | window type (see below)
zerownd parser | zero padding post window type (see below)
strict_window_ratio | bool Disallow window sizes that are not a | yes
multiple of the hop size (fragsize) by a
power of two.
prescale float scaling factor (pre-scaling) (monitor)
postscale float scaling factor (post-scaling) (monitor)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

18.6 resampling

161

Variables of sub-parser wna:

Name | Type Description Default

type keyword_list Window type. hanning
Range: [rect hanning hamming black-
man bartlett user]

user vector<float> | User provided window (used if window | []
type==user).

len int window length/samples 400
Range: [1,]

pos float window position (0 = beginning, 0.5 = | 0.5
symmetric zero padding, 1 = end)
Range: [0,1]

exp float window exponent to be applied to all | 1
elements of window function

Variables of sub-parser zerownd:
Name | Type Description Default
type keyword_list Window type. rect

Range: [rect hanning hamming black-
man bartlett user]

user vector<float>

User provided window (used if window
type==user).

18.6 resampling

Synchronous resampling plugin.

18.6.1 Detailed description

A bridge type resampling plugin. The signal is converted to target sampling rate and fragment
size. The converted signal is processed by the child plugin. The processed signal is then
converted back to the original sampling rate and fragment size. The input data is buffered, and

the data is processed when enough samples are available.

Please note that double buffering adds an extra delay of the audio stream. If both fragment

sizes are identical, the double buffering is bypassed.

18.6.1.1 Warning:

A synchronous resampling ringbuffer such as this causes varying computational loads in the

outer processing buffer. It is therefore not real-time safe.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

162 CONTENTS

18.6.2 Supported domains

The MHA plugin resampling supports these signal domains:

« waveform to waveform

18.6.3 Plugin Tags

plugin-arrangement signal-transformation

18.6.4 Configuration variables

Name Type | Description Default

mhaconfig_in parser | Input configuration (see below)

mhaconfig_out parser | Output configuration (see below)

plugin_name string | Plugin name

srate float sampling rate of client plugin 44100
Range:]0,]

fragsize int fragment size of client plugin 200
Range:]0,]

nyquist_ratio float lowpass filter cutoff frequency / lower | 0.85
nyquist frequency
Range:]0,]

irslen_outer2inner | float filter lenth 1st resampling / sec 0.0007
Range:]0,]

irslen_inner2outer | float filter lenth 2nd resampling / sec 0.0007
Range:]0,]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

18.7 split 163

18.7 split

Split audio signal into channel groups and have them processed by different plugins in parallel

18.7.1 Detailed description

The plugin ’split’ takes a multi-channel input signal and splits it into separate chains of groups
of channels. After processing of each chain, the output channels of each chain are collected
into a multi-channel output signal.

By default, all parallel chains are processed sequentially in a single thread. It is also possible
to process the different chains in different processing threads, to exploit parallel execution on
multi-core CPUs: Set thread_platformto win32 on MS Windows systems, or o posix on
Linux and macOS.

For real-time processing scenarios, it is important to set up the worker threads’ sched-
ulers and priorities to a reasonable value so that they neither starve upstream production
or downstream consumption of the processed audio, nor get themselves interrupted by non-
audio-related tasks on the same system. A reasonable choice is to use the same sched-
uler and priority as the framework thread that invokes the processing of this plugin. Un-
fortunately, this cannot be determined automatically and needs to be set through configu-
ration variables worker_thread_scheduler and worker_thread_priority. The cor-
responding settings of the framework thread can be compared by checking the values of
framework_thread_scheduler and framework_thread_priority during processing.

'split’ also supports processing all contained chains in parallel to all other signal processing
in the MHA by introducing a delay of one audio fragment: In this case, when the split plugin
is asked to process an audio fragment, it immediately returns the processed audio fragment
from the previous invocation, and simultaneously begins processing the new audio fragment
in the worker threads. This mode is activated by setting delay=yes and does not work for
the 'dummy’ thread_platform. Priorities of the worker threads should be set to slightly less
important than the priority of the framework thread.

Thread priorities and schedulers are operating system dependent settings. Check the docu-
mentation of your operating system for details on the schedulers and priorities, and compare
the relative priorities of all processes and threads on your system against expectations with a
suitable tool while openMHA is running.

Plugins loaded by split cannot access algorithm communication (AC) variables created outside
of split, nor pass on algorithm communication variables created inside of split to the outside,
nor can parallel plugins access each others AC variables. Each of the parallel plugins loaded
by split receives an isolated and initially empty AC variable space to avoid synchronization
overhead.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

164 CONTENTS

18.7.2 Supported domains

The MHA plugin split supports these signal domains:

« waveform to waveform

» waveform to spectrum

» spectrum to waveform

* spectrum to spectrum

18.7.3 Plugin Tags

plugin-arrangement audio-channels data-flow

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

19 Plugin category ’signal-generator’

165

18.7.4 Configuration variables

Name

Type

Description

Default

algos

vector<string>

List of plugins which process the differ-
ent groups of audio channels. Exactly
one plugin per channel group must be
given. (Use e.g. [mhachain:chain0
mhachain:chain1 ...] to have more than
one processing plugin per group by
combining them into a chain.

I

channels

vector<int>

Number of channels in the respective
channel groups to be processed by the
corresponding plugins listed in "algos".
Range: [0,[

I

thread_platform

keyword_list

Thread platform to use. "posix" is the
native Linux and macQOS thread plat-
form, "win32" is the native thread plat-
form on windows, "dummy" means that
all processing is performed in a single
thread.

Range: [posix win32 dummy]

dummy

worker_thread_scheduler

keyword_list

Scheduler used for worker threads.
Only used for posix threads. Sug-
gested setting is: The same as present
in framework_thread_scheduler during
processing.

Range: [SCHED_OTHER
SCHED_RR SCHED_FIFQ]

SCHED_OTHER

worker_thread_priority

int

Priority assigned to worker threads.
Suggested setting is: The same as
present in framework_thread_priority
during processing. The default thread
priority given here is invalid. No at-
tempt will be made to set the priority
of the threads if this value remains un-
changed.

999999999

framework_thread scheduler

string

Scheduler used by the framework’s
processing thread. Only valid after first
signal processing callback.

(monitor)

framework_thread_priority

int

Priority of the frameworks processing
thread. Only valid after first signal pro-
cessing callback.

(monitor)

delay

bool

activates processing of contained plu-
gins outside of the calling processing
thread at the cost of one block addi-
tional delay

no

19 Plugin category ’signal-generator’

19.1 noise

white noise generator

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

166 CONTENTS

Waveform and spectral domain are supported. Please note that only in the waveform domain,
real continuous white noise is created. In the spectral domain, some modulation and spectral
shaping might occur.

19.1.1 Detailed description

White noise generator. For each audio channel, statistically independent white noise is added
to that channel’s input signal. Please note that only in the waveform domain, real continuous
white noise is created. In the spectral domain, some modulation and spectral shaping might
occur.

19.1.2 Supported domains

The MHA plugin noise supports these signal domains:

« waveform to waveform

* spectrum to spectrum

19.1.3 Plugin Tags

signal-generator

19.1.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
lev float noise RMS level in dB SPL 0
mode keyword_list | operation mode add
Range: [add replace]
frozennoise_length | float Length of frozen noise in's, or 0 forrun- | 0
ning noise.
Range: [0,]
seed int Seed for the random number genera- | -2030403291
tor.

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

19.2 plingploing

167

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

19.2 plingploing

plingploing algorithm.

19.2.1 Detailed description

This plugin creates music (jazz-inspired chord sequence).

19.2.2 Supported domains

The MHA plugin plingploing supports these signal domains:

« waveform to waveform

19.2.3 Plugin Tags

signal-generator music

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

168

CONTENTS

19.2.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
level float Output level in dB SPL 70
pitch float Bass pitch in Hz 415
Range: [1,]
funi_key float minimum interval of second tone rela- | 3
tive to bass, in semitones
fun1_range float randomized interval of second tone, | 2
added to fun1_key, in semitones
Range: [0,]
fun2_key float minimum interval of third tone relative | 5
to bass, in semitones
fun2_range float randomized interval of third tone, | 2
added to fun2_key, in semitones
Range: [0,]
bpm float beats per minute 200
Range: [1,]
minlen float minimum note length / beats 1
Range: [1,]
maxlen float maximum note length / beats 5
Range: [1,]
bassmod float bass key modulation depth 5
bassperiod float bass key modulation period 28
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
19.3 sine

Sine wave generator.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

19.3 sine 169

19.3.1 Detailed description

Sine generator plugin. Adds a sinusoid with the given RMS level to the configured audio chan-
nels. If the amplitude changes from one block of audio to the next, then the amplitude change
is spread out linearly across all samples of the audio block that first sees the new level to avoid
clicks from discontinuities.

19.3.2 Supported domains

The MHA plugin sine supports these signal domains:

» waveform to waveform

19.3.3 Plugin Tags

signal-generator

19.3.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
lev float sine RMS level in dB SPL FF 0
f float Frequency in Hz 0

Range: [0,
mode keyword_list | Replace input signal with tone or mix | replace

tone into input signal
Range: [replace mix]
channels vector<int> | 0-based indices of audio channels to | []
feed with tone (all other audio channels
are not affected)

Range: [0,]
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

170 CONTENTS

20 Plugin category 'signal-transformation’

20.1 downsample

Downsampling by integer fractions

20.1.1 Detailed description

This plugin performs downsampling by an integer factor named ratio. The input fragment
size needs to be divisible by ratio.

As result of the downsammpling, the output signal has a lower sampling rate (srate) as well as
a smaller fragment size (fragsize) with respect to the input signal of the downsample plugin
(both are divided by the downsampling factor ratio).

The signal duration (7;4nq) Of the audio blocks processed in each invocation of the process
callbacks of openMHAplugins is

fragsize fragsize/ratio
Tsignal = = -
srate srate/ratio

and is not changed by the downsample plugin. The total number of invocations of the process
method is not modified for downstream plugins by the downsampling.

The downsampling is performed by copying only every n-th audio sample of the low-pass fil-
tered input signal over to the output signal. A low-pass filter is required to reduce aliasing in the
output signal and can be configured through the antialias configuration setting.

20.1.2 Supported domains

The MHA plugin downsample supports these signal domains:

« waveform to waveform

20.1.3 Plugin Tags

signal-transformation filter

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

20.2 spec2wave 171
20.1.4 Configuration variables

Name Type | Description Default

mhaconfig_in parser | Input configuration (see below)

mhaconfig_out | parser | Output configuration (see below)

ratio int downsampling ratio 3

Range: [1,]

antialias parser | IR filter structure (see below)
Variables of sub-parser mhaconfig_in:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser antialias:

Name | Type Description Default

A vector<float> | recursive filter coefficients [1]

B vector<float> | non-recursive filter coefficients [1]

20.2 spec2wave

spectrum to waveform iFFT plugin Performs inverse FFT, hanning ramping in zero-padding
regions, postwindowing, overlap-add, and normalization. Note that normalization only works
for mod(wndlen,fragsize)=0. Also note that hanning ramps only work for wndpos=0.5. Always

set ramplen=0 here if wndpos!=0.5 in the corresponding wave2spec.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

172 CONTENTS

20.2.1 Detailed description

This plugin calculates the inverse FFT and overlap add resynthesis. This plugin is the counter-
part of the wave2spec plugin. FFT length, window length, and hop size are taken from signal
metadata published by the upstream wave2spec plugin.

This plugin first computes the inverse Fourier transform, then the hanning window ramps are
applied to the zero-padded regions before and after the analysis window, assuming a centered
position of the analysis window in the FFT buffer. If hanning ramping of these regions is not
desired, the hanning ramping can be deactivated by setting ramplen to 0.

Setting ramplen to values between 0.0 and 1.0 shortens the duration of the hanning ramps
while moving them away from the center.

Additionally, a postwindowing function can be configured which is applied to the whole output
waveform before overlap-adding. The default postwindow shape is rectangular, which means
no effect. Note that the postwindow settings have no effect on the hanning-ramping described
above, which is only controlled by the ramplen setting.

Finally, overlap-add is performed to produce the next output waveform chunk.

20.2.2 Supported domains

The MHA plugin spec2wave supports these signal domains:

» spectrum to waveform

20.2.3 Plugin Tags

signal-transformation overlap-add

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

20.3 upsample

173

20.2.4 Configuration variables

Name Type Description Default
mhaconfig_in | parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
ramplen float Relative length of post windowing han- | 1

ning ramps (for centered analysis win-

dow). 0: no hanning ramping is ap-

plied. 1: hanning ramping is applied

to the full zero-paddings before and af-

ter/n the analysis window. Assumes

symmetric zero-padding. values be-

tween 0 and 1 shorten the ramps and

move them away from the center.

Range: [0,1]
wndtype keyword_list window type rect

Range: [rect bartlett hanning hamming

blackman user]
wndexp float window exponent to be applied to all | 1

elements of window function
userwnd vector<float> | user provided window [

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

20.3 upsample

Upsampling by integer fractions

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

174 CONTENTS

20.3.1 Detailed description

This plugin performs upsampling by an integer factor named ratio.

As result of the upsampling, the output signal has a higher sampling rate (srate) as well as a
larger fragment size (fragsize) with respect to the input signal of the upsample plugin (both
are multiplied by the upsampling factor ratio).

The signal duration (7%;4nq) Of the audio blocks processed in each invocation of the process
callbacks of openMHAplugins

fragsize fragsize - ratio

T al = .
sgn srate srate - ratio

is not changed by the upsample plugin so that the total number of invocations of the process
method is not modified for downstream plugins by the upsampling.

The upsampling is performed by spreading consecutive input audio samples to only every n-
th sample of the output signal while setting the output samples in between consecutive input
samples to value 0. A low-pass filter is required to reduce aliasing in the output signal and can
be configured through the antialias configuration setting.

20.3.2 Supported domains

The MHA plugin upsample supports these signal domains:

» waveform to waveform

20.3.3 Plugin Tags

signal-transformation filter

20.3.4 Configuration variables

Name Type | Description Default
mhaconfig_in | parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
ratio int upsampling ratio 3

Range: [1,]
antialias parser | IR filter structure (see below)

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

20.4 wave2spec 175

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser antialias:
Name | Type Description Default
A vector<float> | recursive filter coefficients [1]
B vector<float> | non-recursive filter coefficients [1]

20.4 wave2spec

Waveform to spectrum overlap add and FFT method.

Audio data is collected up to wndlen, then windowed by the given window function, zero padded
up to fftlen (symmetric zero padding or asymmetric zero padding possible), and fast-Fourier-
transformed. The configuration variables are locked during processing.

20.4.1 Detailed description

The plugin 'wave2spec’ transforms time-domain waveform signal to short-time Fourier trans-
form (STFT) signal. It can be used as the analysis part of a complete overlap-add procedure.
Audio signal data is collected up to the length of the analysis window. The hop-size is equal
to the audio block size that this plugin receives. Window size and FFT length are configurable
through the configuration variables.

Several pre-defined window shapes as well as user-defined window shapes are supported. In
addition, a configurable exponent can be applied to the window samples.

During processing, the input data samples are multiplied with the samples of the analysis win-
dow, zero padded to the FFT length, and Fourier transformed. For this reason, the short time
fourier transform does not exactly correspond to the current input waveform block: the analysis

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

176 CONTENTS

window contains samples from the current as well as from previous invocation(s). The absolute
window shift is identical to the fragment size, e.g. to achieve a window shift of 50%, configure a
fragment size of wndlen/2.

A copy of the output spectrum is stored in the AC space in a variable of same name
as the configured plugin name. To access the spectrum in AC space, the function
MHA_AC::get_var_spectrum() can be used. See the openMHA developer manual or
the header file mha_algo_comm. h for details.

See section 18.5 for a description of the overlap-add method that is also followed by this plugin.

Example configurations for the wave2spec plugin are available in the short-time-fourier-
transform examples directory, and in the matlab/octave tests exercising this plugin in the
mhatest directory. These test files are executed together with the other system-level tests
when invoking make test. Please note that you need to have the signal processing package
installed in order to sucessfully execute all tests for this plugin.®

The plugin performs the following scaling of the signal: The attenuation effect on the level of
applying the analysis window to the input signal is compensated by dividing by the RMS (root
mean square) of the window. To account for the zero-padding, which would reduce the RMS
of the signal block'?, the signal is multiplied with \/fftlen/wndlen. Finally, the forward FFT
operation in the MHA will apply a factor 1/+v/fftlen so that algorithms that compute signal level
do not have to know the fftlen, but can simply sum squared magnitudes of the STFT bins to
compute the RMS of the current block in Pascal.

The purpose of the scaling described in the previous paragraph is to enable spectral algorithms
to determine the physical level of the signal in the current STFT block without having to apply
correction factors for window shape, zero-padding, overlap, FFT length, etc.

20.4.2 Supported domains

The MHA plugin wave2spec supports these signal domains:

» waveform to waveform

+ waveform to spectrum

20.4.3 Plugin Tags

signal-transformation overlap-add

®In octave, the package can be installed with pkg install -forge control signal from within octave.
°The same sum of squared samples would be divided by fftlen instead of wndlen to compute the mean after
zero-padding.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

21 Plugin category ’signalflow’ 177
20.4.4 Configuration variables

Name Type Description Default

mhaconfig_in parser Input configuration (see below)

mhaconfig_out parser Output configuration (see below)

fftlen int FFT lengths 512
Range: [1,]

wndlen int window length/samples 400
Range: [1,]

wndpos float window position (0 = beginning, 0.5 = | 0.5
symmetric zero padding, 1 = end)
Range: [0,1]

wndtype keyword_list | window type hanning
Range: [rect bartlett hanning hamming
blackman user]

wndexp float window exponent to be applied to all | 1
elements of window function

userwnd vector<float> | user provided window 1

strict_window_ratio | bool Disallow window sizes that are not a | yes
multiple of the hop size (fragsize) by
power of two.

return_wave bool return input waveform signal, store | no
spectrum only to AC

zeropadding vector<float> | Zeropadding in samples before and af- | (monitor)
ter the analysis window

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

21 Plugin category 'signalflow’

21.1 audiometerbackend

This plugin mimicks an audiometer by playing a signal in a given sound level on a given channel.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

178 CONTENTS

21.1.1 Detailed description

This plugin has been designed to perform calibrated listening experiments by playing a signal
in a sound level in dB SPL on a user-defined channel both determined by the user. The sound
level can be adapted online while the signal is played. By using these features, this plugin can
be configured to conduct an audiogram measurement or other audiometric measurements. The
sound level in dB SPL can be adjusted by setting the configuration variable level. The signal to
be played can be selected from a pre-defined list or the input signal to this plugin can be used
as well. The choice between the incoming input signal or a signal from the pre-defined list, as
well as on which channel the selected signal is played, is made by setting the playback mode.
For this, the configuration variable mode can be used. This variable is another pre-defined list
of four options, as given below:

* input: The incoming input signal is played

» mute: The selected signal is not played

left: The selected signal is played on the left channel

right: The selected signal is played on the right channel

The list of possible signals is given in the following list:

» sine: Sine wave

oct3_Inn2: Third Octave Low-noise Noise, iterated twice

oct3 _Inn0: Third octave Low-noise Noise

oct_Inn2: Octave Low-noise Noise, iterated twice

oct_Inn0: Octave Low-noise Noise

In order to be able to select the signal from this list, please set the configuration parameter
sigtype. For more details about how the low-noise noise (LNN) is generated, please refer to
the article Kohlrausch et al 1997. The frequency of the signal to be played is determined by
setting the configuration variable freq. Finally, a Hanning ramp can be incorporated in order to
obtain a smooth transition between level changes. The length of the Hanning ramp in seconds
is defined by setting the configuration variable ramplen.

21.1.2 Supported domains

The MHA plugin audiometerbackend supports these signal domains:

« waveform to waveform

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

22 Plugin category ’spatial’ 179
21.1.3 Plugin Tags
signalflow generator audiometer
21.1.4 Configuration variables
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
freq int Frequency in Hz. 440
sigtype keyword_list | Signal type sine
Range: [sine oct3_Inn2 oct3_Inn0
oct_Inn2 oct_Inn0]
level float Level in dB (SPL) of the input file 0
mode keyword_list | Playback mode input
Range: [input mute left right]
ramplen float Length of hanning ramp at level | O
changes in seconds
Range: [0,]
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

22 Plugin category ’'spatial’

221

adm

Adaptive differential microphone

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

180 CONTENTS

22.1.1 Detailed description

This plugin implements one or more adaptive first-order differential microphones, each based
on the output of two omnidirectional microphones, e.g. two hearing-aid microphones (cf. Elko
& Nguyen Pong, 1995). This is achieved by first subtracting the outputs of the two omnidirec-
tional microphones with fixed delays to create a forward-facing and a backward-facing cardioid
microphone, respectively; then, in a second step, the signal from the backward-facing cardioid
is amplified by a variable gain factor and subtracted from the signal from the forward-facing
cardioid. Finally, a lowpass filter and a filter compensating for comb-filter effect is applied to the
output signal.

The gain factor, beta, is determined adaptively such that the power of the output signal is
minimized, under the constraint that the null of the ADM is located in the rear half-plane. The
adaptation step size, mu_beta, can be chosen in order to find the optimal combination of
adaptation speed and accuracy.

To save cpu time on weak devices the adaptation of bet a can be performed only every p frames
by setting the adaptation_ratio configuration variable to p.

0.5

mu_beta = 1e-4

o

Amplitude / AU

0.5

s L ' L ' L ' L '
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2

0.5

o

Amplitude / AU

-0.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.5
mu_beta = 3e-4

0

Amplitude / AU

-0.5

: L s I s I L . L
0 02 04 06 08 1 12 14 16 18 2
Time /s

Figure 14 Output signals illustrating convergence of the ADM algorithm for three
different values of mu_beta (input signal: white Gaussian noise exactly from behind)

22.1.2 Supported domains

The MHA plugin adm supports these signal domains:

« waveform to waveform

22.1.3 Plugin Tags

spatial signal-enhancement beamforming adaptive

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

221 adm 181
22.1.4 Configuration variables
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
front_channels vector<int> Channel indices for front microphones | [0 1]
Range: [0,]
rear_channels vector<int> Channel indices for rear microphones | [2 3]
Range: [0,]
distances vector<float> | Distance between front and rear micro- | [0.0108 0.0108]
phones
Range: [0.0008,0.08]
Ip_order int Filter order of FIR lowpass filter 46
Range: [0,128]
decomb_order int Filter order of FIR comb compensation | 54
filter. Values <=1 deactivate filter.
Range: [0,128]
bypass int If 1, output front microphones directly; | 0
if 2, output rear microphones directly
Range: [0,2]
beta float Explicit fixed beta (-1 for adaptive filter- | -1
ing)
mu_beta vector<float> | Adaptation step size for each set of | [0.0001 0.0001]
ADMs (e.g. left and right)
Range: [0,]
tau_beta vector<float> | time constant / s of low pass filter for | [0.05 0.05]
averaging power of output signal (used
for adaptation)
Range: [0,]
coeff Ip vector<float> | Lowpass coefficients (monitor)
coeff_decomb vector<float> | Decomb coefficients (monitor)

adaptation_ratio

int

Calculate beta every n frames
Range: [1,]

1

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

182 CONTENTS

22.2 coherence

Coherence filter

22.21 Supported domains

The MHA plugin coherence supports these signal domains:

* spectrum to spectrum

22.2.2 Plugin Tags

spatial signal-enhancement dereverberation adaptive

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

22.2 coherence

183

22.2.3 Configuration variables

lay of gains), in fragments.
Range: [0,]

Name Type Description Default

mhaconfig_in parser Input configuration (see below)

mhaconfig_out parser Output configuration (see below)

unit keyword_list Frequency unit Hz
Range: [Hz kHz Oct Oct/3 Bark Erb
ERB_Glasberg1990]

f vector<float> | Frequencies 1

f hz vector<float> | Frequencies in Hz (monitor)

fscale keyword_list frequency scale of filter bank linear
Range: [linear bark log erb
ERB_Glasberg1990]

ovitype keyword_list filter overlap type rect
Range: [rect linear hanning exp gauss]

plateau float relative plateau width 0
Range: [0,1]

ftype keyword_list frequency entry type center
Range: [center edge]

normalize bool normalize broadband output amplitude | no

fail_on_nonmonotonic bool Fail if frequency entries are non- | yes
monotonic (otherwise sort)

fail_on_unique_bins bool Fail if center frequencies share the | yes
same FFT bin.

flag_allow_empty_bands | bool Set true to allow bands where all STFT- | no
bin-gains equal zero.

cf vector<float> | final center frequencies in Hz (monitor)

ef vector<float> | final edge frequencies in Hz (monitor)

cLTASS vector<float> | Bandwidth level correction for LTASS | (monitor)
noise in dB

shapes matrix<float> | Frequency band shapes (monitor)

tau_unit keyword_list tau unit seconds
Range: [seconds periods]

tau vector<float> | Averaging time constant [0.04]
Range: [0,]

alpha vector<float> | Gain exponent [1]
Range: [0,]

limit float gain limit / dB (zero: no limit) 0
Range: [,0]

mapping vector<float> | mapping interval of coherence estima- | [0 1]
tor to coherence (min max)
Range: [0,1]

average keyword_list average mode ipd
Range: [ipd spec]

invert bool Invert filter after mapping, before expo- | no
nent.

ltgcomp bool Long term gain compensation? no

ltgtau vector<float> | Long term gain estimation time con- | [1]
stant/s
Range: [0,]

staticgain vector<float> | Static gain in frequency bands / dB [0]

delay int Delay between analysis and filter (de- | 0

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

184 CONTENTS

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

22.3 delaysum_wave

delay and sum plugin. Mixes all channels into a single output channel after applying channel-
specific weights and delays.

22.3.1 Detailed description

This plugin allows to delay and sum multiple input channels using individual delays and weights.
After each channel is delayed it is multiplied with the given weight and then added to the single
output channel. This plugin was formerly known as delaysum.

22.3.2 Supported domains

The MHA plugin delaysum_wave supports these signal domains:

« waveform to waveform

22.3.3 Plugin Tags

spatial beamforming

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

22.4 doasvm_classification 185
22.3.4 Configuration variables
Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out | parser Output configuration (see below)
weights vector<float> | weights of channels. Each entry is mul- | [1 1]
tiplied to its respective channel. Needs
one entry per channel.
delay vector<int> delay in number of frames. The nth | [0 0]

channel is delayed by the number of
frames found in the nth entry.
Range: [0,]

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

22.4 doasvm_classification

Support vector machine (SVM) plugin for computing the direction of arrival (DOA) probabilities

22.4.1 Detailed description

This plugin loads the parameters of a pre-trained SVM and computes the probabilities for given
range of directions of arrival (DOA). These probabilities take a value within the interval of [0, 1].
Higher probability for a certain DOA indicates higher possibility of a source coming from that

particular DOA.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

186

CONTENTS

22.42 Supported domains

The MHA plugin doasvm_classification supports these signal domains:

» waveform to waveform

22.43 Plugin Tags

spatial classifier binaural

22.4.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
angles vector<float> | The angles for which the SVM model | []
has been trained
w matrix<float> | The separation planes of the model. [m
b vector<float> | The model bias. 1
X vector<float> | The sigmoid probability mapping pa- | []
rameter X.
y vector<float> | The sigmoid probability mapping pa- | []
rametery.
p_name string The name of the AC variable for the | p
vector of probabilities of the DOA es-
timation.
max_p_ind_name | string The name of the AC variable for the in- | p_max
dex of the maximum probability of the
DOA estimation
vGCC_name string The name of the AC variable for the | vGCC_ac
GCC matrix, which is computed by an-
other plugin

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

22.5 doasvm_feature_extraction 187

22,5 doasvm_feature extraction

Plugin for computing the generalized cross correlation with phase transform (GCC-PHAT)

22.5.1 Detailed description

This plugin computes the generalized cross correlation with phase transform (GCC-PHAT). The
input to this plugin is a stereo time domain signal. The GCC-PHAT matrix is saved into the AC
space.

22.5.2 Supported domains

The MHA plugin doasvm_feature_extraction supports these signal domains:

» waveform to waveform

22.5.3 Plugin Tags

spatial feature-extraction binaural

22.5.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
fftlen int The length of the FFT window 160
Range: [0,[
max_lag int Maximum lag in samples between mi- | 20
crophones (setup-dependent)
Range: [0,[
nupsample int The amount the GCC-PHAT spectrum | 4
is oversampled
Range: [0,[
vGCC_name string | The name of the AC variable for saving | vGCC_ac
the GCC matrix in

Variables of sub-parser mhaconfig_in:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

188 CONTENTS
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

23 Plugin category ’test-tool’

23.1 cpuload

cpu load generator. CPU load is proportional to number of channels, number of frames, and

factor

23.1.1 Detailed description

This plugin artificially generates cpu load. The achieved CPU load is proportional to number of
channels, number of frames, and factor. If use_sine is set, a sine of is calculated, making the
load mainly cpu-bound. Alternatively an operation on a variable size table is done, simulatung
a memory bound problem.

23.1.2 Supported domains

The MHA plugin cpuload supports these signal domains:

» waveform to waveform

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

23.2 dropgen 189

23.1.3 Plugin Tags

test-tool

23.1.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
factor float cpu load factor. Values > 1 increase | 1
cpu load, values < 1 decrease it
Range: [0,]
table_size int Size of the lookup table 65536
Range: [1,]
use_sine bool Whether to use the sine function. yes

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

23.2 dropgen

23.2.1 Detailed description

This plugin randomly generates dropouts by waiting between 1 and 10 frames in .5

This plugin does not otherwise modify the signal. Do not include this plugin in production
setups.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

190

CONTENTS

23.2.2 Supported domains

The MHA plugin dropgen supports these signal domains:

« waveform to waveform

* spectrum to spectrum

23.2.3 Plugin Tags

test-tool

23.2.4 Configuration variables

Name Type | Description Default

mhaconfig_in parser | Input configuration (see below)

mhaconfig_out parser | Output configuration (see below)

min_sleep_time | float minimum sleep time, in s 0
Range: [0,]

max_sleep_time | float minimum sleep time, in s 0
Range: [0,]

chance float chance of an artificial dropout 0
Range: [0,

Variables of sub-parser mhaconfig_in:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

23.3 droptect 191

23.3 droptect

Plugin detects dropouts in channels that have a constant spectrum

23.3.1 Detailed description

Plugin to detect dropouts in live audio processing setups. droptect expects an input signal
with a spectral shape that does not vary over time, e.g. a combination of different sinusoids.

Either feed such a signal from an external source into the sound card used by openMHA, or
have openMHA create such a signal downstream of the droptect plugin (e.g. with sine), and
feed the sound card output back into the sound card input with an audio cable.

droptect detects a dropout if

» The broadband level of the current STFT spectrum is below threshold, or

» The level of any bin of the STFT spectrum differs by more than 6dB from the average
spectrum.

STFT bins with very low level (35 dB below the broadband threshold) are excluded from the
6dB difference criterium to allow for soft microphone noise.

Detected dropouts are accumulated per audio channel and published in the monitor variable
dropouts. The count can be reset to 0 by assigning "yes" to reset. Some false positive
detected dropouts on startup of signal processing are expected. Reset the dropout count after
processing has started to remove these false positives.

23.3.2 Supported domains

The MHA plugin droptect supports these signal domains:

- spectrum to spectrum

23.3.3 Plugin Tags

test-tool

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

192

CONTENTS

23.3.4 Configuration variables

Name Type Description Default
mhaconfig_in parser Input configuration (see below)
mhaconfig_out parser Output configuration (see below)
dropouts vector<int> Number of dropouts detected since last | (monitor)
reset or start
consecutive_dropouts | vector<int> Number of consecutive dropouts. Re- | (monitor)
sets to 0 each time there is no dropout.
blocks int Number of blocks processed since last | (monitor)
reset or start
reset bool Setting to "yes" clears number of | no
dropouts and blocks. Value is reset
to "no" when the next spectrum is pro-
cessed.
threshold float Threshold level in dB. All blocks be- | 50
low this threshold are considered to be
dropouts
tau float Time constant for filtering power spec- | 0.2
tra
filtered_powspec_mon | matrix<float> | Floating average of power spectrum (monitor)
level_mon vector<float> | current level (monitor)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
23.4 identity
23.4.1 Detailed description
The simplest openMHA plugin.

This plugin does not modify the signal.

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

23.4 identity 193

23.42 Supported domains

The MHA plugin identity supports these signal domains:

« waveform to waveform

* spectrum to spectrum

23.4.3 Plugin Tags

test-tool

23.4.4 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)

Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

194

CONTENTS

23.5 matlab_wrapper

23.5.1 Supported domains

The MHA plugin matlab_wrapper supports these signal domains:

« waveform to waveform

+ waveform to spectrum

* spectrum to waveform

* spectrum to spectrum

23.5.2 Plugin Tags

test-tool

23.5.3 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
library_name string | Name of matlab generated library
Variables of sub-parser mhaconfig_in:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)
Variables of sub-parser mhaconfig_out:
Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)
fragsize int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

23.6 testplugin

195

23.6 testplugin

loads a plugin for testing

23.6.1 Supported domains

The MHA plugin testplugin supports these signal domains:

« waveform to waveform

- spectrum to spectrum

23.6.2 Plugin Tags

test-tool feature-extraction

23.6.3 Configuration variables

Name Type | Description Default
mhaconfig_in parser | Input configuration (see below)
mhaconfig_out | parser | Output configuration (see below)
plugin_name string | Plugin name
config_in parser | signal domain and dimensions (see below)
config_out parser | signal domain and dimensions (see below)
ac parser | Insert and retrieve AC variables (see below)
signal parser | signal input and output (see below)
prepare bool for preparing/releasing the loaded plu- | no
gin
Variables of sub-parser mhaconfig_in:

Name Type | Description Default
channels | int Number of audio channels (monitor)
domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)
fragsize | int Fragment size of waveform data (monitor)
wndlen int Window length of spectral data (monitor)
fftlen int FFT length of spectral data (monitor)
srate float | Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

196 CONTENTS

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)

MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)

Variables of sub-parser config_in:

Name Type Description Default

channels | int Number of audio channels 2
Range: [0,]

domain keyword_list | Signal domain MHA_WAVEFORM
Range: [MHA_WAVEFORM
MHA_SPECTRUM]

fragsize | int Fragment size of waveform data 200
Range: [0,]

wndlen int Window length of spectral data 400
Range: [0,]

fftlen int FFT length of spectral data 512
Range: [0,]

srate float Sampling rate in Hz 44100
Range: 10,]

Variables of sub-parser config_out:

Name Type Description Default

channels | int Number of audio channels 2
Range: [0,]

domain keyword_list | Signal domain MHA_WAVEFORM
Range: [MHA_WAVEFORM
MHA_SPECTRUM]

fragsize | int Fragment size of waveform data 200
Range: [0,]

wndlen int Window length of spectral data 400
Range: [0,]

fftlen int FFT length of spectral data 512
Range: [0,]

srate float Sampling rate in Hz 44100
Range:]0,]

Variables of sub-parser ac:

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

24 Plugin category ’testing’ 197

Name Type Description Default
insert_var string Setting this inserts an AC variable into
the AC space
get_var string Setting this retrieves an AC variable
from the AC space
data_type keyword_list Type of data. No sup- | unknown

port for MHA_AC_USER and
MHA_AC_DOUBLE data access
Range: [MHA_AC_CHAR
MHA AC INT MHA AC MHAREAL
MHA AC_FLOAT MHA AC DOUBLE
MHA_AC_MHACOMPLEX unknown]

num_entries int Number of entries 1
Range: [0,]

stride int length of one row (C interpretation) or | 1
of one column (Fortran interpretation)
Range: [0,]

char_data string data of ac variable if data_type is
MHA_AC_CHAR

int_data vector<int> data of ac variable if data_type is | []
MHA_AC_INT

float_data vector<float> data of ac variable if data_type | []
is MHA_AC_FLOAT or

MHA_AC_MHAREAL

complex_data | vector<complex> | data of ac variable if data_type is | []
MHA_AC_MHACOMPLEX

Variables of sub-parser signal:

Name Type Description Default

input_wave matrix<float> waveform input signal. Writing data will | [[]]
cause processing

input_spec matrix<complex> | spectrum input signal. Writing data will | [[]]
cause processing

output_wave | matrix<float> waveform output signal from last pro- | (monitor)
cessing

output_spec | matrix<complex> | spectrum output signal from last pro- | (monitor)
cessing

24 Plugin category ’'testing’

24.1 complex_scale_channel

example plugin configuration structure

24.1.1 Supported domains
The MHA plugin complex_scale_channel supports these signal domains:

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

198

CONTENTS

24.1.2 Plugin Tags

testing

24.1.3 Configuration variables

Name Type Description Default

mhaconfig_in | parser Input configuration (see below)

mhaconfig_out | parser Output configuration (see below)

channel int index of channel to be scaled 0

Range: [0,
factor complex | complex scale factor 1
Variables of sub-parser mhaconfig_in:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize | int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float Sampling rate in Hz (monitor)

Variables of sub-parser mhaconfig_out:

Name Type | Description Default

channels | int Number of audio channels (monitor)

domain string | Signal domain (MHA_WAVEFORM or | (monitor)
MHA_SPECTRUM)

fragsize int Fragment size of waveform data (monitor)

wndlen int Window length of spectral data (monitor)

fftlen int FFT length of spectral data (monitor)

srate float | Sampling rate in Hz (monitor)

24.2 proc_counter

Counter for invocations of signal processing callback

24.21 Supported domains

The MHA plugin proc_counter supports these signal domains:

» waveform to waveform

* spectrum to spectrum

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

25 All plugins tagged 'DNN-based’ 199

24.2.2 Plugin Tags

testing signalhandling

24.2.3 Configuration

The plugin represents a variable node in the MHA configuration hierarchy.

Type | Description Default
int Counter for invocations of signal | (monitor)
processing callback

25 All plugins tagged 'DNN-based’

« bmfwf: Section 1.1 on page 1
+ gcfsnet_bin: Section 1.2 on page 2

» gcfsnet_mono: Section 1.3 on page 4

26 All plugins tagged ’adaptive’

 acSteer: Section 8.1 on page 67

* adaptive_feedback_canceller: Section 10.1 on page 87
« adm: Section 22.1 on page 179

* coherence: Section 22.2 on page 182

» gsc_adaptive_stage: Section 2.1 on page 5

* |pc: Section 10.4 on page 92

* lpc_bl_predictor: Section 10.5 on page 94

* Ipc_burg-lattice: Section 10.6 on page 95

* nlms_wave: Section 10.7 on page 97

* noise_psd_estimator: Section 17.1 on page 143
» prediction_error: Section 10.8 on page 99

» smooth_cepstrum: Section 17.2 on page 145

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

27 All plugins tagged ’algorithm-communication’

28

200

CONTENTS

ac2wave: Section 7.1 on page 42
acConcat_wave: Section 7.2 on page 43
acPooling_wave: Section 7.3 on page 45
ac_mul: Section 7.4 on page 49
ac_proc: Section 7.5 on page 50
analysispath: Section 18.3 on page 154
example6: Section 9.7 on page 85
route: Section 7.13 on page 62
save_spec: Section 7.14 on page 63

save_wave: Section 7.15 on page 64

All plugins tagged ’audio-channels’

combinechannels: Section 7.6 on page 51
delay: Section 7.9 on page 56
example1: Section 9.2 on page 79
example2: Section 9.3 on page 80
example3: Section 9.4 on page 81
example4: Section 9.5 on page 82
example5: Section 9.6 on page 84
example7: Section 9.8 on page 86
fader_spec: Section 7.10 on page 57
fader_wave: Section 7.11 on page 58
matrixmixer: Section 7.12 on page 59
route: Section 7.13 on page 62

split: Section 18.7 on page 163

steerbf: Section 11.5 on page 107

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

29 All plugins tagged "audiometer’

201

29

30

31

32

33

All plugins tagged 'audiometer’

audiometerbackend: Section 21.1 on page 177

All plugins tagged 'bheamforming’

acSteer: Section 8.1 on page 67

adm: Section 22.1 on page 179
delaysum_spec: Section 3.1 on page 6
delaysum_wave: Section 22.3 on page 184
rohBeam: Section 3.2 on page 7

steerbf: Section 11.5 on page 107

All plugins tagged ’binaural’

acSteer: Section 8.1 on page 67
doasvm_classification: Section 22.4 on page 185
doasvm_feature_extraction: Section 22.5 on page 187
rohBeam: Section 3.2 on page 7

steerbf: Section 11.5 on page 107

All plugins tagged ’calibration’

transducers: Section 11.6 on page 108

All plugins tagged ’ci-vocoder’

ci_auralization_ace: Section 4.1 on page 10
ci_auralization_cis: Section 4.2 on page 12
ci_simulation_ace: Section 4.3 on page 14
ci_simulation_cis: Section 4.4 on page 16
get_rms: Section 4.5 on page 18

set_rms: Section 4.6 on page 19

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

202 CONTENTS

34 All plugins tagged ’classifier’

» doasvm_classification: Section 22.4 on page 185

35 All plugins tagged ‘compression’

+ dc: Section 5.1 on page 20

+ dc_simple: Section 5.2 on page 24

* levelmeter: Section 14.1 on page 135

» multibandcompressor: Section 12.6 on page 123

« softclip: Section 5.3 on page 27

36 All plugins tagged 'cross-fade’

* fader_spec: Section 7.10 on page 57

 fader_wave: Section 7.11 on page 58

37 All plugins tagged 'data-export’

+ ac2lsl: Section 6.1 on page 28

» ac2osc: Section 6.2 on page 29

+ ac2xdf: Section 6.3 on page 30

« acmon: Section 6.4 on page 32
 acrec: Section 6.5 on page 34

» acsave: Section 6.6 on page 36

« trigger2isl: Section 6.7 on page 37
» wave2lsl: Section 6.8 on page 39

» wavrec: Section 6.9 on page 40

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

38 All plugins tagged ’data-flow’ 203

38 All plugins tagged ‘data-flow’

» ac2wave: Section 7.1 on page 42

» acConcat_wave: Section 7.2 on page 43

+ acPooling_wave: Section 7.3 on page 45

» ac_mul: Section 7.4 on page 49

» ac_proc: Section 7.5 on page 50

» altconfig: Section 18.1 on page 151

* altplugs: Section 18.2 on page 152

» analysispath: Section 18.3 on page 154

» combinechannels: Section 7.6 on page 51
+ db: Section 7.7 on page 53

« dbasync: Section 7.8 on page 54

+ delay: Section 7.9 on page 56

- fader_spec: Section 7.10 on page 57
 fader_wave: Section 7.11 on page 58

» matrixmixer: Section 7.12 on page 59

* mhachain: Section 18.4 on page 156

* route: Section 7.13 on page 62

» save_spec: Section 7.14 on page 63

» save_wave: Section 7.15 on page 64

» shadowfilter_begin: Section 7.16 on page 65
» shadowfilter_end: Section 7.17 on page 66
» smoothgains_bridge: Section 15.3 on page 140
* split: Section 18.7 on page 163

39 All plugins tagged ‘data-import’

* acSteer: Section 8.1 on page 67

+ addsndfile: Section 8.2 on page 69

» double2acvar: Section 8.3 on page 73
* Isl2ac: Section 8.4 on page 74

+ osc2ac: Section 8.5 on page 76

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

40

M

42

43

204

CONTENTS

All plugins tagged ‘dereverberation’

coherence: Section 22.2 on page 182

All plugins tagged ‘directional’

delaysum_spec: Section 3.1 on page 6

All plugins tagged 'disk-files’

ac2xdf: Section 6.3 on page 30
acSteer: Section 8.1 on page 67
acrec: Section 6.5 on page 34
acsave: Section 6.6 on page 36
addsndfile: Section 8.2 on page 69

wavrec: Section 6.9 on page 40

All plugins tagged ’example’

attenuate20: Section 9.1 on page 78
example1: Section 9.2 on page 79
example2: Section 9.3 on page 80
example3: Section 9.4 on page 81
example4: Section 9.5 on page 82
example5: Section 9.6 on page 84
example6: Section 9.7 on page 85

example7: Section 9.8 on page 86

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

44 All plugins tagged ’feature-extraction’ 205

44 All plugins tagged ’feature-extraction’

» acPooling_wave: Section 7.3 on page 45

» ac_proc: Section 7.5 on page 50

» doasvm_feature_extraction: Section 22.5 on page 187
» example6: Section 9.7 on page 85

* fftfbpow: Section 12.1 on page 113

* multibandcompressor: Section 12.6 on page 123
* noise_psd_estimator: Section 17.1 on page 143
» rmslevel: Section 14.2 on page 136

» shadowfilter_begin: Section 7.16 on page 65
 shadowfilter_end: Section 7.17 on page 66

* tesiplugin: Section 23.6 on page 195

» windnoise: Section 17.3 on page 147

45 All plugins tagged 'feedback-suppression’

- adaptive_feedback_canceller: Section 10.1 on page 87
« fshift: Section 10.2 on page 90

« fshift_hilbert: Section 10.3 on page 91

* Ipc: Section 10.4 on page 92

* Ipc_bl_predictor: Section 10.5 on page 94

* Ipc_burg-lattice: Section 10.6 on page 95

* nlms_wave: Section 10.7 on page 97

+ prediction_error: Section 10.8 on page 99

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

46

47

48

206

CONTENTS

All plugins tagged filter’

bmfwf: Section 1.1 on page 1

downsample: Section 20.1 on page 170
equalize: Section 11.1 on page 102
fftfilter: Section 11.2 on page 103
gcfsnet_bin: Section 1.2 on page 2
gcfsnet_mono: Section 1.3 on page 4
gsc_adaptive_stage: Section 2.1 on page 5
iirfilter: Section 11.3 on page 105

mconv: Section 11.4 on page 105
shadowfilter_begin: Section 7.16 on page 65
shadowfilter_end: Section 7.17 on page 66
smoothgains_bridge: Section 15.3 on page 140
steerbf: Section 11.5 on page 107
transducers: Section 11.6 on page 108

upsample: Section 20.3 on page 173

All plugins tagged ‘filterbank’

combinechannels: Section 7.6 on page 51
fftfbpow: Section 12.1 on page 113
fftfilterbank: Section 12.2 on page 115
gtfb_analyzer: Section 12.3 on page 118
gtfb_simd: Section 12.4 on page 119
gtfb_simple_bridge: Section 12.5 on page 121

multibandcompressor: Section 12.6 on page 123

All plugins tagged ‘frequency-modification’

fshift: Section 10.2 on page 90
fshift_hilbert: Section 10.3 on page 91

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

49 All plugins tagged ’generator’

207

49

50

51

52

All plugins tagged 'generator’

audiometerbackend: Section 21.1 on page 177

All plugins tagged ’io’

MHAIODummy: Section 13.1 on page 125
MHAIOFile: Section 13.2 on page 126
MHAIOJack: Section 13.3 on page 127
MHAIOJackdb: Section 13.4 on page 128
MHAIOParser: Section 13.5 on page 130
MHAIOPortAudio: Section 13.6 on page 130
MHAIOTCP: Section 13.7 on page 133

MHAIOQalsa: Section 13.8 on page 133

All plugins tagged ’lab-streaming-layer’

ac2lsl: Section 6.1 on page 28
trigger2Isl: Section 6.7 on page 37

wave2lsl: Section 6.8 on page 39

All plugins tagged ’level-meter’

fftfopow: Section 12.1 on page 113

levelmeter: Section 14.1 on page 135
multibandcompressor: Section 12.6 on page 123
rmslevel: Section 14.2 on page 136

transducers: Section 11.6 on page 108

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

208

CONTENTS

53 All plugins tagged ’level-modification’

54

95

56

attenuate20: Section 9.1 on page 78

dc: Section 5.1 on page 20

dc_simple: Section 5.2 on page 24

equalize: Section 11.1 on page 102

example1: Section 9.2 on page 79

example2: Section 9.3 on page 80

example3: Section 9.4 on page 81

example4: Section 9.5 on page 82

example5: Section 9.6 on page 84

example7: Section 9.8 on page 86

fader_spec: Section 7.10 on page 57
fader_wave: Section 7.11 on page 58

gain: Section 15.1 on page 137
level_matching: Section 15.2 on page 138
multibandcompressor: Section 12.6 on page 123
smoothgains_bridge: Section 15.3 on page 140
softclip: Section 5.3 on page 27

All plugins tagged ’limiter’

softclip: Section 5.3 on page 27

transducers: Section 11.6 on page 108

All plugins tagged ’linear-algebra’

acTransform_wave: Section 16.1 on page 142

All plugins tagged 'math’

acTransform_wave: Section 16.1 on page 142

ac_mul: Section 7.4 on page 49

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

57 All plugins tagged 'multichannel’

209

57 All plugins tagged 'multichannel’

» delaysum_spec: Section 3.1 on page 6

58 All plugins tagged 'music’

* plingploing: Section 19.2 on page 167

59 All plugins tagged 'network-communication’

 ac2lsl: Section 6.1 on page 28
 ac2osc: Section 6.2 on page 29

» acmon: Section 6.4 on page 32

* Isl2ac: Section 8.4 on page 74

» 0sc2ac: Section 8.5 on page 76

« trigger2lsl: Section 6.7 on page 37

» waveZ2lsl: Section 6.8 on page 39

60 All plugins tagged ’noise-suppression’
* noise_psd_estimator: Section 17.1 on page 143

» smooth_cepstrum: Section 17.2 on page 145

» windnoise: Section 17.3 on page 147

61 All plugins tagged 'open-sound-control’

» ac2osc: Section 6.2 on page 29

» osc2ac: Section 8.5 on page 76

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

62

63

64

65

210

CONTENTS

All plugins tagged 'overlap-add’

overlapadd: Section 18.5 on page 157
smoothgains_bridge: Section 15.3 on page 140
spec2wave: Section 20.2 on page 171

wave2spec: Section 20.4 on page 175

All plugins tagged ’plugin-arrangement’

altconfig: Section 18.1 on page 151
altplugs: Section 18.2 on page 152
analysispath: Section 18.3 on page 154
mhachain: Section 18.4 on page 156
overlapadd: Section 18.5 on page 157
resampling: Section 18.6 on page 161

split: Section 18.7 on page 163

All plugins tagged ’signal-enhancement’

adm: Section 22.1 on page 179
coherence: Section 22.2 on page 182

smooth_cepstrum: Section 17.2 on page 145

All plugins tagged ’signal-generator’

addsndfile: Section 8.2 on page 69
noise: Section 19.1 on page 165
plingploing: Section 19.2 on page 167

sine: Section 19.3 on page 168

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

66 All plugins tagged ’signal-transformation’

211

66

67

68

69

All plugins tagged ’signal-transformation’

db: Section 7.7 on page 53

dbasync: Section 7.8 on page 54

delay: Section 7.9 on page 56
downsample: Section 20.1 on page 170
overlapadd: Section 18.5 on page 157
resampling: Section 18.6 on page 161
spec2wave: Section 20.2 on page 171
upsample: Section 20.3 on page 173

wave2spec: Section 20.4 on page 175

All plugins tagged ’signalflow’

audiometerbackend: Section 21.1 on page 177

All plugins tagged ’signalhandling’

proc_counter: Section 24.2 on page 198

All plugins tagged ’spatial’

adm: Section 22.1 on page 179

bmifwf: Section 1.1 on page 1

coherence: Section 22.2 on page 182
delaysum_wave: Section 22.3 on page 184
doasvm_classification: Section 22.4 on page 185
doasvm_feature_extraction: Section 22.5 on page 187
gcfsnet_bin: Section 1.2 on page 2

gcfsnet_mono: Section 1.3 on page 4

steerbf: Section 11.5 on page 107

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

212 REFERENCES

70 All plugins tagged ’test-tool’

cpuload: Section 23.1 on page 188
 dropgen: Section 23.2 on page 189

droptect: Section 23.3 on page 191

identity: Section 23.4 on page 192
« matlab_wrapper: Section 23.5 on page 194

testplugin: Section 23.6 on page 195

71 All plugins tagged ’testing’

« complex_scale_channel: Section 24.1 on page 197

» proc_counter: Section 24.2 on page 198

72 All plugins tagged ’unit-testing’

» example7: Section 9.8 on page 86

References

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

Index

ac2lsl (MHA plugin), 28
ac2osc (MHA plugin), 29
ac2wave (MHA plugin), 42
ac2xdf (MHA plugin), 30
ac_mul (MHA plugin), 49
ac_proc (MHA plugin), 50
acConcat_wave (MHA plugin), 43
acmon (MHA plugin), 32
acPooling_wave (MHA plugin), 45
acrec (MHA plugin), 34
acsave (MHA plugin), 36
acSteer (MHA plugin), 67
acTransform_wave (MHA plugin), 142
adaptive (plugin category)
acSteer, 67
adaptive_feedback_canceller, 87
adm, 179
coherence, 182
gsc_adaptive_stage, 5
Ipc, 92
Ipc_bl_predictor, 94
Ilpc_burg-lattice, 95
nims_wave, 97
noise_psd_estimator, 143
prediction_error, 99
smooth_cepstrum, 145

adaptive_feedback_canceller (MHA plugin),

87
addsndfile (MHA plugin), 69
adm (MHA plugin), 179

algorithm-communication (plugin category)

ac2wave, 42
ac_mul, 49
ac_proc, 50
acConcat_wave, 43
acPooling_wave, 45
analysispath, 154
example6, 85
route, 62
save_spec, 63
save_wave, 64
altconfig (MHA plugin), 151
altplugs (MHA plugin), 152
analysispath (MHA plugin), 154
attenuate20 (MHA plugin), 78
audio-channels (plugin category)
combinechannels, 51
delay, 56

examplel, 79
example2, 80
example3, 81
example4, 82
example5, 84
example7, 86
fader_spec, 57
fader_wave, 58
matrixmixer, 59
route, 62
split, 163
steerbf, 107
audiometer (plugin category)
audiometerbackend, 177
audiometerbackend (MHA plugin), 177

beamforming (plugin category)
acSteer, 67
adm, 179
delaysum_spec, 6
delaysum_wave, 184
rohBeam, 7
steerbf, 107

binaural (plugin category)
acSteer, 67
doasvm_ classification, 185
doasvm_feature_extraction, 187
rohBeam, 7
steerbf, 107

bmfwf (MHA plugin), 1

calibration (plugin category)
transducers, 108
ci-vocoder (plugin category)
ci_auralization_ace, 10
ci_auralization_cis, 12
ci_simulation_ace, 14
ci_simulation_cis, 16
get_rms, 18
set_ rms, 19
ci_auralization_ace (MHA plugin), 10
ci_auralization_cis (MHA plugin), 12
ci_simulation_ace (MHA plugin), 14
ci_simulation_cis (MHA plugin), 16
classifier (plugin category)
doasvm_ classification, 185
coherence (MHA plugin), 182
combinechannels (MHA plugin), 51

complex_scale_channel (MHA plugin), 197

214 INDEX

compression (plugin category) dbasync (MHA plugin), 54
dc, 20 dc (MHA plugin), 20
dc_simple, 24 dc_simple (MHA plugin), 24
levelmeter, 135 delay (MHA plugin), 56
multibandcompressor, 123 delaysum_spec (MHA plugin), 6
softclip, 27 delaysum_wave (MHA plugin), 184
cpuload (MHA plugin), 188 dereverberation (plugin category)
cross-fade (plugin category) coherence, 182
fader_spec, 57 directional (plugin category)
fader_wave, 58 delaysum_spec, 6
disk-files (plugin category)
data-export (plugin category) ac2xdf, 30
ac2lsl, 28 acrec, 34
ac2osc, 29 acsave, 36
ac2xdf, 30 acSteer, 67
acmon, 32 addsndfile, 69
acrec, 34 wavrec, 40
acsave, 36 DNN-based (plugin category)
trigger2Isl, 37 bmifwf, 1
wave2ls|, 39 gcfsnet_bin, 2
wavrec, 40 gcfsnet_mono, 4
data-flow (plugin category) doasvm_classification (MHA plugin), 185
ac2wave, 42 doasvm_feature_extraction (MHA plugin), 187
ac_mul, 49 double2acvar (MHA plugin), 73
ac_proc, 50 downsample (MHA plugin), 170

acConcat_wave, 43
acPooling_wave, 45
altconfig, 151
altplugs, 152
analysispath, 154
combinechannels, 51

dropgen (MHA plugin), 189
droptect (MHA plugin), 191

equalize (MHA plugin), 102
example (plugin category)
attenuate20, 78

db, 53 examplel, 79
dbasync, 54 example2, 80
delay, 56 example3, 81
fader_spec, 57 example4, 82
fader_wave, 58 example5, 84

matrixmixer, 59
mhachain, 156
route, 62
save_spec, 63
save_wave, 64
shadowfilter_begin, 65
shadowfilter_end, 66
smoothgains_bridge, 140
split, 163

data-import (plugin category)
acSteer, 67
addsndfile, 69
double2acvar, 73
Isl2ac, 74
osc2ac, 76

db (MHA plugin), 53

example6, 85

example7, 86
example1 (MHA plugin), 79
example2 (MHA plugin), 80
example3 (MHA plugin), 81
example4 (MHA plugin), 82
example5 (MHA plugin), 84
example6 (MHA plugin), 85
example7 (MHA plugin), 86

fader_spec (MHA plugin), 57
fader_wave (MHA plugin), 58

feature-extraction (plugin category)

ac_proc, 50
acPooling_wave, 45

doasvm_feature_extraction, 187

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

INDEX

215

example6, 85

fftfbpow, 113
multibandcompressor, 123
noise_psd_estimator, 143
rmslevel, 136
shadowfilter_begin, 65
shadowfilter_end, 66
testplugin, 195

windnoise, 147

feedback-suppression (plugin category)
adaptive_feedback_canceller, 87

fshift, 90
fshift_hilbert, 91
Ipc, 92
Ipc_bl_predictor, 94
lpc_burg-lattice, 95
nims_wave, 97
prediction_error, 99
fitfbpow (MHA plugin), 113
fftfilter (MHA plugin), 103
fftfilterbank (MHA plugin), 115
filter (plugin category)
bmfwf, 1
downsample, 170
equalize, 102
ftfilter, 103
gcfsnet_bin, 2
gcfsnet_mono, 4
gsc_adaptive_stage, 5
iirfilter, 105
mconv, 105
shadowfilter_begin, 65
shadowfilter_end, 66
smoothgains_bridge, 140
steerbf, 107
transducers, 108
upsample, 173
filterbank (plugin category)
combinechannels, 51
fitfbpow, 113
fftfilterbank, 115
gtfb_analyzer, 118
gtfb_simd, 119
gtfb_simple_bridge, 121
multibandcompressor, 123

frequency-modification (plugin category)

fshift, 90

fshift_hilbert, 91
fshift (MHA plugin), 90
fshift_hilbert (MHA plugin), 91

gain (MHA plugin), 137

gcfsnet_bin (MHA plugin), 2
gcfsnet_mono (MHA plugin), 4
generator (plugin category)
audiometerbackend, 177
get_rms (MHA plugin), 18

gsc_adaptive_stage (MHA plugin), 5

gtfb_analyzer (MHA plugin), 118
gtfb_simd (MHA plugin), 119

gtfb_simple_bridge (MHA plugin), 121

identity (MHA plugin), 192

iirfilter (MHA plugin), 105

io (plugin category)
MHAIOalsa, 133
MHAIODummy, 125
MHAIOFile, 126
MHAIOJack, 127
MHAIOJackdb, 128
MHAIOParser, 130
MHAIOPortAudio, 130
MHAIOTCP, 133

lab-streaming-layer (plugin category)

ac2lsl, 28
trigger2lsl, 37
wave2lsl, 39

level-meter (plugin category)
fftfbpow, 113
levelmeter, 135
multibandcompressor, 123
rmslevel, 136
transducers, 108

level-modification (plugin category)
attenuate20, 78
dc, 20
dc_simple, 24
equalize, 102
examplel, 79
example2, 80
example3, 81
example4, 82
example5, 84
example7, 86
fader_spec, 57
fader_wave, 58
gain, 137
level_matching, 138
multibandcompressor, 123
smoothgains_bridge, 140
softclip, 27

level_matching (MHA plugin), 138
levelmeter (MHA plugin), 135

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

216

INDEX

limiter (plugin category)

softclip, 27

transducers, 108
linear-algebra (plugin category)

acTransform_wave, 142
Ipc (MHA plugin), 92
Ipc_bl_predictor (MHA plugin), 94
Ipc_burg-lattice (MHA plugin), 95
Isl2ac (MHA plugin), 74

math (plugin category)

ac_mul, 49

acTransform_wave, 142
matlab_wrapper (MHA plugin), 194
matrixmixer (MHA plugin), 59
mconv (MHA plugin), 105
mhachain (MHA plugin), 156
MHAIOalsa (MHA plugin), 133
MHAIODummy (MHA plugin), 125
MHAIOFile (MHA plugin), 126
MHAIOJack (MHA plugin), 127
MHAIOJackdb (MHA plugin), 128
MHAIOParser (MHA plugin), 130
MHAIOPortAudio (MHA plugin), 130
MHAIOTCP (MHA plugin), 133
multibandcompressor (MHA plugin), 123
multichannel (plugin category)

delaysum_spec, 6
music (plugin category)

plingploing, 167

network-communication (plugin category)
ac2lsl, 28
ac2osc, 29
acmon, 32
Isl2ac, 74
osc2ac, 76
trigger2lsl, 37
wave2ls|, 39
nims_wave (MHA plugin), 97
noise (MHA plugin), 165
noise-suppression (plugin category)
noise_psd_estimator, 143
smooth_cepstrum, 145
windnoise, 147
noise_psd_estimator (MHA plugin), 143

open-sound-control (plugin category)
ac2osc, 29
osc2ac, 76
osc2ac (MHA plugin), 76
overlap-add (plugin category)

overlapadd, 157
smoothgains_bridge, 140
spec2wave, 171
wave2spec, 175
overlapadd (MHA plugin), 157

plingploing (MHA plugin), 167
plugin
ac2lsl, 28
ac2osc, 29
ac2wave, 42
acz2xdf, 30
ac_mul, 49
ac_proc, 50
acConcat_wave, 43
acmon, 32
acPooling_wave, 45
acrec, 34
acsave, 36
acSteer, 67
acTransform_wave, 142
adaptive_feedback_canceller, 87
addsndfile, 69
adm, 179
altconfig, 151
altplugs, 152
analysispath, 154
attenuate20, 78
audiometerbackend, 177
bmfwf, 1
ci_auralization_ace, 10
ci_auralization_cis, 12
ci_simulation_ace, 14
ci_simulation _cis, 16
coherence, 182
combinechannels, 51
complex_scale_channel, 197
cpuload, 188
db, 53
dbasync, 54
dc, 20
dc_simple, 24
delay, 56
delaysum_spec, 6
delaysum_wave, 184
doasvm_ classification, 185
doasvm_feature_extraction, 187
double2acvar, 73
downsample, 170
dropgen, 189
droptect, 191
equalize, 102

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

INDEX

217

examplet, 79
example2, 80
example3, 81
example4, 82
exampleb, 84
example6, 85
example7, 86
fader_spec, 57
fader_wave, 58
fitfbpow, 113

fftfilter, 103
fftfilterbank, 115
fshift, 90
fshift_hilbert, 91
gain, 137
gcfsnet_bin, 2
gcfsnet_mono, 4
get_rms, 18
gsc_adaptive_stage, 5
gtfb_analyzer, 118
gtfb_simd, 119
gtfb_simple_bridge, 121
identity, 192

iirfilter, 105
level_matching, 138
levelmeter, 135

Ipc, 92
Ipc_bl_predictor, 94
Ipc_burg-lattice, 95
Isl2ac, 74
matlab_wrapper, 194
matrixmixer, 59
mconv, 105
mhachain, 156
MHAIOalsa, 133
MHAIODummy, 125
MHAIOFile, 126
MHAIOJack, 127
MHAIOJackdb, 128
MHAIOParser, 130
MHAIOPortAudio, 130
MHAIOTCP, 133
multibandcompressor, 123
nims_wave, 97
noise, 165
noise_psd_estimator, 143
osc2ac, 76
overlapadd, 157
plingploing, 167
prediction_error, 99
proc_counter, 198

resampling, 161

rmslevel, 136

rohBeam, 7

route, 62

save_spec, 63

save_wave, 64

set_ rms, 19

shadowfilter_begin, 65

shadowfilter_end, 66

sine, 168

smooth_cepstrum, 145

smoothgains_bridge, 140

softclip, 27

spec2wave, 171

split, 163

steerbf, 107

testplugin, 195

transducers, 108

trigger2lsl, 37

upsample, 173

wave2lsl, 39

wave2spec, 175

wavrec, 40

windnoise, 147
plugin-arrangement (plugin category)

altconfig, 151

altplugs, 152

analysispath, 154

mhachain, 156

overlapadd, 157

resampling, 161

split, 163
prediction_error (MHA plugin), 99
proc_counter (MHA plugin), 198

resampling (MHA plugin), 161
rmslevel (MHA plugin), 136
rohBeam (MHA plugin), 7
route (MHA plugin), 62

save_spec (MHA plugin), 63
save_wave (MHA plugin), 64
set_rms (MHA plugin), 19
shadowfilter_begin (MHA plugin), 65
shadowfilter_end (MHA plugin), 66
signal-enhancement (plugin category)

adm, 179

coherence, 182

smooth_cepstrum, 145
signal-generator (plugin category)

addsndfile, 69

noise, 165

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

218 INDEX

plingploing, 167 wave2spec (MHA plugin), 175
sine, 168 wavrec (MHA plugin), 40
signal-transformation (plugin category) windnoise (MHA plugin), 147

db, 53
dbasync, 54
delay, 56

downsample, 170
overlapadd, 157
resampling, 161
spec2wave, 171
upsample, 173
wave2spec, 175
signalflow (plugin category)
audiometerbackend, 177
signalhandling (plugin category)
proc_counter, 198
sine (MHA plugin), 168
smooth_cepstrum (MHA plugin), 145
smoothgains_bridge (MHA plugin), 140
softclip (MHA plugin), 27
spatial (plugin category)
adm, 179
bmfwf, 1
coherence, 182
delaysum_wave, 184
doasvm_ classification, 185
doasvm_feature_extraction, 187
gcfsnet_bin, 2
gcfsnet_mono, 4
steerbf, 107
spec2wave (MHA plugin), 171
split (MHA plugin), 163
steerbf (MHA plugin), 107

test-tool (plugin category)
cpuload, 188
dropgen, 189
droptect, 191
identity, 192
matlab_wrapper, 194
testplugin, 195
testing (plugin category)
complex_scale_channel, 197
proc_counter, 198
testplugin (MHA plugin), 195
transducers (MHA plugin), 108
trigger2Isl (MHA plugin), 37

unit-testing (plugin category)
example7, 86
upsample (MHA plugin), 173

wave2lsl (MHA plugin), 39

© 2005-2021 HorTech gGmbH, Oldenburg, © 2021-2024 Hérzentrum Oldenburg gGmbH

	Plugin category 'DNN-based'
	bmfwf
	gcfsnet_bin
	gcfsnet_mono

	Plugin category 'adaptive'
	gsc_adaptive_stage

	Plugin category 'beamforming'
	delaysum_spec
	rohBeam

	Plugin category 'ci-vocoder'
	ci_auralization_ace
	ci_auralization_cis
	ci_simulation_ace
	ci_simulation_cis
	get_rms
	set_rms

	Plugin category 'compression'
	dc
	dc_simple
	softclip

	Plugin category 'data-export'
	ac2lsl
	ac2osc
	ac2xdf
	acmon
	acrec
	acsave
	trigger2lsl
	wave2lsl
	wavrec

	Plugin category 'data-flow'
	ac2wave
	acConcat_wave
	acPooling_wave
	ac_mul
	ac_proc
	combinechannels
	db
	dbasync
	delay
	fader_spec
	fader_wave
	matrixmixer
	route
	save_spec
	save_wave
	shadowfilter_begin
	shadowfilter_end

	Plugin category 'data-import'
	acSteer
	addsndfile
	double2acvar
	lsl2ac
	osc2ac

	Plugin category 'example'
	attenuate20
	example1
	example2
	example3
	example4
	example5
	example6
	example7

	Plugin category 'feedback-suppression'
	adaptive_feedback_canceller
	fshift
	fshift_hilbert
	lpc
	lpc_bl_predictor
	lpc_burg-lattice
	nlms_wave
	prediction_error

	Plugin category 'filter'
	equalize
	fftfilter
	iirfilter
	mconv
	steerbf
	transducers

	Plugin category 'filterbank'
	fftfbpow
	fftfilterbank
	gtfb_analyzer
	gtfb_simd
	gtfb_simple_bridge
	multibandcompressor

	Plugin category 'io'
	MHAIODummy
	MHAIOFile
	MHAIOJack
	MHAIOJackdb
	MHAIOParser
	MHAIOPortAudio
	MHAIOTCP
	MHAIOalsa

	Plugin category 'level-meter'
	levelmeter
	rmslevel

	Plugin category 'level-modification'
	gain
	level_matching
	smoothgains_bridge

	Plugin category 'math'
	acTransform_wave

	Plugin category 'noise-suppression'
	noise_psd_estimator
	smooth_cepstrum
	windnoise

	Plugin category 'plugin-arrangement'
	altconfig
	altplugs
	analysispath
	mhachain
	overlapadd
	resampling
	split

	Plugin category 'signal-generator'
	noise
	plingploing
	sine

	Plugin category 'signal-transformation'
	downsample
	spec2wave
	upsample
	wave2spec

	Plugin category 'signalflow'
	audiometerbackend

	Plugin category 'spatial'
	adm
	coherence
	delaysum_wave
	doasvm_classification
	doasvm_feature_extraction

	Plugin category 'test-tool'
	cpuload
	dropgen
	droptect
	identity
	matlab_wrapper
	testplugin

	Plugin category 'testing'
	complex_scale_channel
	proc_counter

	All plugins tagged 'DNN-based'
	All plugins tagged 'adaptive'
	All plugins tagged 'algorithm-communication'
	All plugins tagged 'audio-channels'
	All plugins tagged 'audiometer'
	All plugins tagged 'beamforming'
	All plugins tagged 'binaural'
	All plugins tagged 'calibration'
	All plugins tagged 'ci-vocoder'
	All plugins tagged 'classifier'
	All plugins tagged 'compression'
	All plugins tagged 'cross-fade'
	All plugins tagged 'data-export'
	All plugins tagged 'data-flow'
	All plugins tagged 'data-import'
	All plugins tagged 'dereverberation'
	All plugins tagged 'directional'
	All plugins tagged 'disk-files'
	All plugins tagged 'example'
	All plugins tagged 'feature-extraction'
	All plugins tagged 'feedback-suppression'
	All plugins tagged 'filter'
	All plugins tagged 'filterbank'
	All plugins tagged 'frequency-modification'
	All plugins tagged 'generator'
	All plugins tagged 'io'
	All plugins tagged 'lab-streaming-layer'
	All plugins tagged 'level-meter'
	All plugins tagged 'level-modification'
	All plugins tagged 'limiter'
	All plugins tagged 'linear-algebra'
	All plugins tagged 'math'
	All plugins tagged 'multichannel'
	All plugins tagged 'music'
	All plugins tagged 'network-communication'
	All plugins tagged 'noise-suppression'
	All plugins tagged 'open-sound-control'
	All plugins tagged 'overlap-add'
	All plugins tagged 'plugin-arrangement'
	All plugins tagged 'signal-enhancement'
	All plugins tagged 'signal-generator'
	All plugins tagged 'signal-transformation'
	All plugins tagged 'signalflow'
	All plugins tagged 'signalhandling'
	All plugins tagged 'spatial'
	All plugins tagged 'test-tool'
	All plugins tagged 'testing'
	All plugins tagged 'unit-testing'

