
The Open Master Hearing Aid
(openMHA)

4.18.0

Getting Started

© 2005-2021 by HörTech gGmbH, Marie-Curie-Str. 2, D–26129 Oldenburg, Germany
© 2021-2024 by Hörzentrum Oldenburg gGmbH, Marie-Curie-Str. 2, D–26129 Oldenburg, Germany

The Open Master Hearing Aid (openMHA) – Getting Started
HörTech gGmbH
Marie-Curie-Str. 2
D–26129 Oldenburg

iii

LICENSE AGREEMENT
This file is part of the HörTech Open Master Hearing Aid (openMHA)
Copyright © 2005 2006 2007 2008 2009 2010 2012 2013 2014 2015 2016 HörTech gGmbH.
Copyright © 2017 2018 2019 2020 2021 HörTech gGmbH.
Copyright © 2021 2022 2023 2024 Hörzentrum Oldenburg gGmbH.
openMHA is free software: you can redistribute it and/or modify it under the terms of the GNU
Affero General Public License as published by the Free Software Foundation, version 3 of the
License.
openMHA is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU Affero General Public License, version 3 for more details.
You should have received a copy of the GNU Affero General Public License, version 3 along
with openMHA. If not, see <http://www.gnu.org/licenses/>.

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

Contents

1 Introduction 1
1.1 About this Manual . 1
1.2 Structure . 1
1.3 Platform Services and Conventions . 2

2 Requirements 2
2.1 Required Programs . 2
2.2 Update to Latest Version . 3
2.3 System-Specific Settings . 3

3 Getting Started 4
3.1 Starting openMHA . 4

4 Step-by-Step Exercise: Gain Application 6
4.1 File to File . 8
4.2 Starting openMHA with JACK Input/Output . 9

5 Control Frequency Shifter using Octave/Matlab GUI 12

6 Control Dynamic Compression using Octave/Matlab GUI 14

7 Using AC Variables 16

8 Writing your own Configuration Script 19

1 Introduction 1

1 Introduction

The HörTech open Master Hearing Aid (openMHA), is a development and evaluation software
platform that is able to execute hearing aid signal processing in real-time on standard comput-
ing hardware with a low delay between sound input and output.

1.1 About this Manual

This manual provides instructions for first steps to be taken when starting to work with open-
MHA. After outlining the purpose and basic structure of openMHA the user is guided through
the installation and invocation of the openMHA command line application. Then, some basic
configurations and step-by-step instructions on how to run them are presented in order to give
a first insight how openMHA is controlled. Furthermore, tools are introduced that are helpful
to operate openMHA such as using the Jack Audio Connection Kit (JACK) with the openMHA,
invoking openMHA inside Matlab/Octave, and basic instructions on writing your own configu-
ration are given.

1.2 Structure

The openMHA can be split into four major components:

• The openMHA command line application (MHA)

• Signal processing plugins (plugins)

• Audio input-output modules (IO)

• The openMHA toolbox library (libopenmha)

openMHA

plugins IO

audio backend
(Jack, File, TCP)

MHAlibopenmha

control applications
(e.g., Octave)

Figure 1 Layered structure of the open Master Hearing Aid

The MHA command line application acts as a plugin host. It can load signal processing
plugins as well as audio input-output modules (IO). Additionally, it provides the command line
configuration interface and a TCP/IP based configuration interface. Different IO modules exist:
For real-time signal processing, commonly the openMHA MHAIOJack module is used, which
provides an interface to the Jack Audio Connection Kit (JACK), the module MHAIOFile provide
audio file access and MHAIOTCP TCP/IP-based signal exchange.

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

2 CONTENTS

openMHA plugins provide the audio signal processing capabilities and audio signal handling.
Typically, one openMHA plugin implements one specific algorithm. A complete virtual hearing
aid signal processing can be achieved by a combination of several openMHA plugins.

1.3 Platform Services and Conventions

The openMHA platform offers some services and conventions to algorithms implemented in
plugins, that make it especially well suited to develop hearing aid algorithms, while still sup-
porting general-purpose signal processing.
As in most other plugin hosts, the audio signal in the openMHA is processed in fragments, i.e.,
in chunks of the input signal stream with a defined length. However, plugins are not restricted
to propagate audio signal as fragments of audio samples in the time domain another option
is to propagate the audio signal in the short time Fourier transform (STFT) domain, i.e. as
spectra of fragments of audio signal, so that not every plugin has to perform its own STFT
analysis and synthesis. Since STFT analysis and re-synthesis of acceptable audio quality al-
ways introduces an algorithmic delay, sharing STFT data is a necessity for a hearing aid signal
processing platform in order to achieve a sufficiently low delay for the whole processing chain.
Sharing non-audio information between the plugins is achieved by using algorithm communi-
cation (AC) variables. They will be discussed further in section 7 of this manual.

2 Requirements

2.1 Required Programs

Please install the following software to work with this guide:

• Operating System

– Linux: Ubuntu 20.04 or later, 64 bits
– Windows: Windows 10, 64 bits
– macOS: macOS Monterey (version 12) or later

• openMHA
https://github.com/HoerTech-gGmbH/openMHA/blob/master/INSTALLATION.md

• either Octave or Matlab

– Octave:

* Linux:
→ sudo apt install octave-signal

* Windows:
https://www.gnu.org/software/octave/download.html

* macOS:
→ Automatically installed as a recommended dependency when installing openMHA via Home-
brew.

– Matlab:
https://www.mathworks.com/downloads/

• JACK Audio Connection Kit

– Linux:
→ sudo apt install jackd2 qjackctl

– Windows
http://jackaudio.org/downloads/

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

https://github.com/HoerTech-gGmbH/openMHA/blob/master/INSTALLATION.md
https://www.gnu.org/software/octave/download.html
https://www.mathworks.com/downloads/
http://jackaudio.org/downloads/

2.2 Update to Latest Version 3

– macOS:
→ Automatically installed as dependency when installing openMHA via Homebrew.

2.2 Update to Latest Version

This guide was released with openMHA version 4.18.0. If you have already installed openMHA
on your system, make sure that you are using the latest version.

• Windows
Repeat the installation process using the latest Windows installer. The installation in-
structions can be found at https://github.com/HoerTech-gGmbH/openMHA/blob/
master/INSTALLATION.md

• macOS
When upgrading from openMHA 4.17.0 or earlier, you need to uninstall the old version
first. When upgrading from openMHA 4.18.0 or leater, you can update via Homebrew:
brew update
brew upgrade
Please refer to the installation instructions which can be found at https://github.
com/HoerTech-gGmbH/openMHA/blob/master/INSTALLATION.md

• Linux
In Linux, all installed openMHA packages need to be updated. For updating openMHA
when a new release is available, execute:
sudo apt-get update
sudo apt-get install openmha
This will upgrade all installed openmha packages to their latest version.

2.3 System-Specific Settings

• Linux

– Add your user to the audio group (replace YourUserName with your actual user
name on the Linux system):
→ sudo adduser YourUserName audio

– Install a low-latency Linux kernel:
→ sudo apt install linux-image-lowlatency

– Reboot the computer to use the new kernel and to activate the group membership.

• Windows, macOS
Ensure that your Octave/Matlab installation can make use of Java. Test by executing in
the Octave/Matlab command window:
→ javaclasspath
If this responds with "STATIC JAVA PATH ... DYNAMIC JAVA PATH ..." then Java is set
up correctly (even if there is also a warning).
If Octave/Matlab responds with an error, then you need to install a suitable Java Runtime
Environment on your computer, restart Octave/Matlab and test again. Refer to Octave/-
Matlab documentation for details.

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

https://github.com/HoerTech-gGmbH/openMHA/blob/master/INSTALLATION.md
https://github.com/HoerTech-gGmbH/openMHA/blob/master/INSTALLATION.md
https://github.com/HoerTech-gGmbH/openMHA/blob/master/INSTALLATION.md
https://github.com/HoerTech-gGmbH/openMHA/blob/master/INSTALLATION.md

4 CONTENTS

3 Getting Started

3.1 Starting openMHA

After openMHA and its dependencies have been installed (see section 2.1) you can start open-
MHA by:

Linux

In order to start openMHA open your terminal and type:
→ mha --interactive

Windows

Open your terminal by:

→ "Windows + R"
→ type in cmd and press Enter
Now type mha --interactive into the terminal window.

macOS

Open your terminal by pressing Command + Space in order to open spotlight search, type
"terminal" and press Enter. Type:

→ mha --interactive

in your terminal.

Figure 2 - Linux Terminal: Type mha --interactive

. .

Note: The current directory of the terminal becomes the current working directory
(CWD) of the openMHA process. openMHA resolves relative file names relative to
the CWD. If in some of the following examples in this guide openMHA raises an er-
ror because it cannot find some file, check that the file name can be resolved from the

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

3.1 Starting openMHA 5

CWD. To fix file lookup problems, either change the CWD in the terminal before restart-
ing the openMHA, or adapt any file names to include correct absolute or relative paths.

You have managed to start openMHA. In the next section there will be a step-by-
step tutorial on how to use a simple configuration.

In order to terminate the openMHA started in this chapter, you can type
→ cmd=quit
followed by Enter into the terminal.

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

6 CONTENTS

4 Step-by-Step Exercise: Gain Application

First Steps
A simple openMHA use case is the application of a gain to an audio signal. We will start
by applying a gain factor to an audio file named 1speaker_diffNoise_2ch.wav.
The corresponding parameters (e.g. gain factor, input channels, fragment size and
sample size) can be set manually, however for this example there is already an open-
MHA configuration file available at:

• Linux: /usr/share/openmha/examples/00-gain

• Windows: C:\Program Files\openMHA\examples\00-gain

• macOS with Intel processor: /usr/local/share/openmha/examples/00-gain

• macOS with ARM processor: /opt/homebrew/share/openmha/examples/00-gain

A shortened version of the gain.cfg file is shown below. A short description precedes
each command in a line starting with # which is used for comments. The actual file on
disk contains more verbose comments.

gain_getting_started.cfg:

1 #The number of channels we want to process
2 nchannels_in = 2
3 #Number of frames to be processed in each block.
4 fragsize = 64
5 #Sampling rate. Has to be the same as the input file
6 srate = 44100
7 #We want to use the plugin "mhachain"
8 mhalib = mhachain
9 #Now we need to define input-output backend "iolib"

10 #Here we decide if the audio should come from a static audio
11 #file or from e.g. a live input source such as a microphone
12 #input
13 #In this case we will use simple static audio files
14 iolib = MHAIOFile
15 #The plugin "mhachain" can load multiple plugins and
16 #will connect them in series which is denoted by "[...]"
17 #Here we will only use one plugin "gain"
18 mha.algos=[gain]
19 #Set max and min gain factors in dB
20 mha.gain.min=-20
21 mha.gain.max=20
22 #nchannels_in was set to 2 (see line 2), so we have to define
23 #two gain factors (left and right)
24 mha.gain.gains=[-10 10]
25 #Define the name of the input and output file
26 #The input file needs to be in the same directory
27 #as the .cfg file itself
28 io.in = 1speaker_diffNoise_2ch.wav
29 io.out = 1speaker_diffNoise_2ch_OUT.wav

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

4 Step-by-Step Exercise: Gain Application 7

In this guide we will use the example files from the openMHA installer. Since these are
installed in a read-only directory, we need to copy the examples to a writable location
before using them. Follow these steps:

1. Close all running openMHA processes

2. Copy the examples folder from the installation directory
(e.g. /usr/share/openmha/examples/) (see the list on page 6 for your specific
operating system)

Figure 3 - Copy the examples folder from the protected directory (e.g.
/usr/share/openmha/

3. Paste the examples into folder within a writable directory, e.g. your home direc-
tory:

Figure 4 - Paste examples into folder inside a non-protected directory (e.g.
/home/YourUserName/Documents

4. Open your terminal (see 3.1)

5. Navigate inside the examples folder into the subdirectory of the first exam-
ple → 00-gain
(e.g. /home/YourUserName/Documents/examples/00-gain)

→ you can use cd .. to navigate one folder level up

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

8 CONTENTS

→ and cd foldername to descend into the subfolder foldername
→ if the macOS or Linux terminal does not show the current directory, type pwd

6. Type mha --interactive and press Enter

4.1 File to File

You have started the openMHA in interactive mode and can now type in openMHA
commands. The current working directory of the openMHA should be the copy of the
00-gain example directory in the writable location. In order to read in the configuration
file gain.cfg (which lies directly in 00-gain), type:

→?read:gain_getting_started.cfg
Start the openMHA signal processing by:
→ cmd=start
and then exit openMHA by typing:
→ cmd=quit

Figure 5 Interactive mode: Applying gain to a static audio signal

openMHA has created a second .wav file "1speaker_diffNoise_2ch_OUT.wav" in
the current 00-gain folder. (e.g. /home/YourUserName/Documents/examples/00-
gain). You can listen to it and compare it to "1speaker_diffNoise_2ch.wav".

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

4.2 Starting openMHA with JACK Input/Output 9

4.2 Starting openMHA with JACK Input/Output

In this section we perform the same signal processing as before, but replace the sound
files with the JACK server as audio backend. This means that we can apply a gain to
e.g. our microphone input in real time. The configuration file gain_live.cfg will be
used for this.

Note: This and all following live processing examples configure the sound card with
small buffer sizes. Your combination of computer, sound card, and operating system
may be unable to process the sound with these settings without dropouts. If you ex-
perience problems, try a faster computer, optimize the operating system for real-time
performance, or use a different sound card or operating system.

gain_live_getting_started.cfg:

1 #The number of channels we want to process
2 nchannels_in = 2
3 #Number of frames to be processed in each block.
4 fragsize = 64
5 #Sampling rate. Has to be the same as the input signal of JACK
6 srate = 44100
7 #Again, we want to use the plugin "mhachain"
8 mhalib = mhachain
9 #Here we will only use one plugin "gain"

10 mha.algos=[gain]
11 #Set max and min gain factors in dB
12 mha.gain.min=-20
13 mha.gain.max=20
14 #two gain factors (left and right)
15 mha.gain.gains=[-10 10]
16 #In this example, we load the IO library that connects
17 #the MHA to the Jack audio server.
18 iolib = MHAIOJackdb
19 # The following variable is used to select the input sound
20 # channel(s), following the usual Jack nomenclature
21 io.con_in = [system:capture_1 system:capture_2]
22 # con_out sets the output channels
23 io.con_out = [system:playback_1 system:playback_2]

In order to set up and connect a JACK server you can follow the steps below:

1. Start Jack Audio Connection Kit

• Linux:
Type qjackctl into a terminal.

• Windows:
Use the JACK Control start menu entry.

• macOS:
Type qjackctl into a terminal. If asked, then you need to allow access to
your sound devices.

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

10 CONTENTS

Figure 6 JACK Audio Connection Kit: GUI

2. Setup → Settings → select proper Driver, Interface, Sample Rate=44100,
Frames/Period=64 → OK

Figure 7 Jack GUI: Setup

3. Click Start for starting a JACK server → Check Messages for any errors (some-
times it can be difficult to find proper driver settings, try out different settings)

Figure 8 Jack GUI with running server

4. In order to test your Jack server, you can go to the Connect section and connect
the inputs of your (internal) microphones to the output channels of the jack server
(see Figure 9).

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

4.2 Starting openMHA with JACK Input/Output 11

Figure 9 Jack GUI: Setup

Disconnect these connections again before proceeding. You can now use the
JACK server as audio backend. To do this, start openMHA in the same directory
as before:

5. Open your terminal (see 3.1)

6. Navigate inside the examples folder into the subdirectory of the first exam-
ple → 00-gain

7. Type mha --interactive and press Enter

8. → ?read:gain_live_getting_started.cfg

9. → cmd=start

openMHA is now applying a gain to your own voice input. In order to close open-
MHA type:

10. → cmd=quit

You have now managed to start some simple configurations for a static audio
file as well as a live input using Jack. In the next session Matlab or Octave will
be used as user interface for openMHA.

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

12 CONTENTS

5 Control Frequency Shifter using Octave/Matlab GUI

1. End all running mha processes

2. Open Matlab or Octave

3. Linux: Set LD_LIBRARY_PATH to empty by typing
→ setenv('LD_LIBRARY_PATH','')
into the Command Window
MacOS with Intel processor: Type:
→ setenv('PATH', [getenv('PATH') ':/usr/local/bin']);
into the Command Window
MacOS with ARM processor: Type:
→ setenv('PATH', [getenv('PATH') ':/opt/homebrew/bin']);
into the Command Window

4. Use the Matlab/Octave "Current Folder" control to navigate to:

• Linux:
/usr/share/openmha/examples/05-frequency-shifting

• Windows:
C:\Program Files\openMHA\examples\05-frequency-shifting

• macOS with Intel processor:
/usr/local/share/openmha/examples/05-frequency-shifting

• macOS with ARM processor:
/opt/homebrew/share/openmha/examples/05-frequency-shifting

5. In order to use the Matlab functions of openMHA type the following using the
Command Window:

• Linux:
→ addpath('/usr/lib/openmha/mfiles')

• Windows:
→ addpath('C:\Program Files\openMHA\mfiles')

• macOS with Intel processor:
→ addpath('/usr/local/lib/openmha/mfiles/')

• macOS with ARM processor:
→ addpath('/opt/homebrew/lib/openmha/mfiles/')

6. In order to start a new openMHA instance type
→ openmha = mha_start;

7. In order to read in the configuration file type:
→ mha_query(openmha,'','read:fshift_live.cfg');

8. Start JACK Server using JACK Control
(Setting: Sample Rate = 44100, Frames/Period = 64)

9. Start the mha process by typing
→ mha_set(openmha, 'cmd', 'start');

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

5 Control Frequency Shifter using Octave/Matlab GUI 13

10. JACK Control: Connect the "capture" and "playback" channels of the sound card
to the MHA "in" and "out" channels. Connect a microphone to the soundcard.

11. Start GUI by typing
→ mhagui_generic(openmha) into the Command Window

(a) mha ->open sub-parser
(b) mhachain ->open sub-parser
(c) fshift_hilbert ->open sub-parser
(d) df -> open vector<float>control

12. Change the settings df, fmin and fmax in the GUI and listen to the processed
microphone sound. You can not only move the sliders using the mouse cursor
or up- and down-arrow keys, but also replace the numbers directly by typing new
numbers and pressing Enter in the text fields of the GUI. These settings control
a frequency shifter, which band is shifted and how much.

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

14 CONTENTS

6 Control Dynamic Compression using Octave/Matlab GUI

1. End all running mha processes (You can type killall mha in the terminal to any
running mha processes [Linux/macOS only])

2. Open Matlab or Octave

3. Linux: Set LD_LIBRARY_PATH to empty by typing
→ setenv('LD_LIBRARY_PATH','')
into the Command Window
MacOS with Intel processor: Type:
→ setenv('PATH', [getenv('PATH') ':/usr/local/bin']);
into the Command Window
MacOS with ARM processor: Type:
→ setenv('PATH', [getenv('PATH') ':/opt/homebrew/bin']);
into the Command Window

4. Use the Matlab/Octave "Current Folder" Section to navigate to:

• Linux: /usr/share/openmha/examples/01-dynamic-compression
• Windows: C:\Program Files\openMHA\examples\01-dynamic-compression
• macOS with Intel processor: /usr/local/share/openmha/examples/01-dynamic-

compression
• macOS with ARM processor: /opt/homebrew/share/openmha/examples/01-

dynamic-compression

5. In order to use the Matlab functions of openMHA type the following using the
Command Window:

• Linux: addpath('/usr/lib/openmha/mfiles')
• Windows: addpath('C:\Program Files\openMHA\mfiles')

• macOS with Intel processor: addpath('/usr/local/lib/openmha/mfiles/')
• macOS with ARM processor: addpath('/opt/homebrew/lib/openmha/mfiles/')

6. In order to start openMHA type openmha = mha_start;

7. Read in configuration into mha by
mha_query(openmha,'','read:dynamiccompression_live.cfg');

8. Start JACK Server using JACK Control
(Setting: Sample Rate = 44100, Frames/Period = 64)

9. In order to start the mha process type mha_set(openmha,'cmd','start');

10. The current gaintable gtdata and relevant parameters such as gtmin and gtstep
(more information on these can be found under http://www.openmha.org/
docs/openMHA_plugins.pdf#subsection.5.1) can be read out by:

gaintable = mha_get(openmha,'mha.overlapadd.mhachain.dc.gtdata');
gtmin = mha_get(openmha,'mha.overlapadd.mhachain.dc.gtmin');
gtstep = mha_get(openmha,'mha.overlapadd.mhachain.dc.gtstep');

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

http://www.openmha.org/docs/openMHA_plugins.pdf#subsection.5.1
http://www.openmha.org/docs/openMHA_plugins.pdf#subsection.5.1

6 Control Dynamic Compression using Octave/Matlab GUI 15

The variables gtmin (minimum input level) and gtstep (input level increment)
expect vectors, but we have assigned scalar values to gtmin and gtstep previ-
ously. Scalar values will be interpreted as vectors of length 1 by the MHA when
assigned to vector variables. The dc plugin allows vectors of length 1 for variables
gtmin and gtstep, in this case the same value applies to every channel/band.
It is also possible to have different gtmin/gtstep values for each channel/band
by assigning a vector of values to these variables where the number of elements
in the vector is equal to the number of channels/bands.

11. You can design your own gaintable in Matlab, e.g. noise gate, compressive re-
gion, output limit
gaintable = repmat([-50,30:-2:0,-4:-4:-32],18,1);
with
gtmin = zeros(1,size(gaintable,1));
and
gtstep = 4*ones(1,size(gaintable,1));

This would result in an input/output characteristic which is the same for every
channel/band.

12. Plot the I/O characteristics
level_in = ((1:size(gaintable,2))-1) .* gtstep'+gtmin';
level_out = level_in + gaintable;

13. In order to apply the gaintable type
mha_set(openmha,'mha.overlapadd.mhachain.dc.gtdata',gaintable);

14. In order to plot input and output level in Matlab, type
figure, plot(level_in',level_out')

Note: You can also use the mfile tool dc_plot_io.m. For this type:
figure, dc_plot_io(gtmin, gtstep,gaintable, level_in);

15. You can design more gaintables in Matlab, e.g. by using gaintable_new =
[...]

• e.g. Squash all input levels to the same output level, infinite compression:
gaintable_new = 65.*ones(18,1) - level_in;

• e.g. compress high frequency band only: ...

16. In order to apply the new gaintable type
mha_set(openmha,'mha.overlapadd.mhachain.dc.gtdata',gaintable_new);

17. The fitting GUI can be started by typing mhacontrol(openmha)

18. You can stop openMHA using mha_set(openmha,'cmd','quit')

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

16 CONTENTS

7 Using AC Variables

The objective of this section is to learn about dealing with AC-Variables in combination
with Matlab.

What are AC Variables?

Sometimes plugin algorithms need to share more information than just the current au-
dio signal. openMHA supports this by providing a mechanism to share any type of
additional data between plugins in the form of algorithm communication variables
or AC variables. Further information on the purpose of AC Variables can be found in
the Application Manual section 2.2.

. .

The coherence between two live microphone signals is investigated. A JACK server is
used to connect both microphone signals to openMHA.

1. Start JACK Server using JACK Control
(Setting: Sample Rate = 44100, Frames/Period = 64)
Note: You need to have two microphone inputs available for this task

2. Start Matlab/Octave and the "Current Folder" control to navigate to:

• Linux: /usr/share/openmha/examples/15-ac-variables
• Windows: C:\Program Files\openMHA\examples\15-ac-variables
• macOS with Intel processor: /usr/local/share/openmha/examples/15-ac-

variables
• macOS with ARM processor: /opt/homebrew/share/openmha/examples/15-

ac-variables

3. Open the Matlab script acmatlab.m

The most important lines of acmatlab.m are shown below:

1 %Start openMHA process
2 openmha = mha_start;
3 % Read configuration file
4 mha_query(openmha,'','read:coherence_live.cfg');
5 % Start configuration file
6 mha_set(openmha,'cmd','start')
7

8 %% Label center frequencies and set gain factor of ac_proc
9

10 % Label center frequencies
11 freqs=mha_get(openmha,'mha.overlapadd.mhachain.coherence.cf');
12 % Set gain factor in dB - default value was choosen to be 6
13 mha_set(openmha,'mha.overlapadd.mhachain.coh_gain.gain.gains',6);

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

7 Using AC Variables 17

Explanation
The configuration used is called coherence_live.cfg. It uses the plugin mhachain
in order to connect three plugins:
1. coherence
2. ac_proc:coh_gain
3. acmon in series.
Within the configuration file this is denoted by:

mha.overlapadd.mhachain.algos = [coherence ac_proc:coh_gain acmon]

The purpose of each plugin is the following:

coherence: This plugin measures the coherence between the two microphone
input signals.

ac_proc:coh_gain: The real name of the plugin is ac_proc, however in this case
the alias coh_gain is used. This plugin interprets the AC variable data stream
received from coherence as an audio signal. The plugin itself can load another
plugin. In this case the gain plugin is loaded. The gain factor was choosen to be
6 dB. This means that the AC variable output "signal" is amplified by 6 dB. (line
12) Outside the plugin ac_proc the signal is provided as AC variable stream.

acmon: This plugin is used to convert incoming AC variable data streams into
monitor variables. In this case the output of coherence as well as ac_proc:coh_gain
is used.

Figure 10 Schematics of AC variable data stream between plugins: coherence,
ac_proc, acmon

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

18 CONTENTS

4. Start the Matlab script acmatlab.m

Figure 11 Matlab: Coherence plotted as a function of frequency

The purpose of this example is to show that the plugin ac_proc can be used to
apply common signal processing operations such as a gain to an originally non-
audio signal such as an AC variable data stream.

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

8 Writing your own Configuration Script 19

8 Writing your own Configuration Script

This section will offer a guide on how to write your own openMHA script. For doing so
some basic parameters need to be set. In this example we want to write an example
script for using the sine plugin.

First it is necessary to fix the following parameters:

1. Number of input channels (nchannels_in)

2. Fragment size (fragsize)

3. Sampling rate in Hz (srate)
For an input file with two channels and a sampling rate of 44.1 kHz. This could
for example look like:

#The number of channels we want to process
nchannels_in = 2
#Number of frames to be processed in each block.
fragsize = 64
#Sampling rate. Has to be the same as the input file
srate = 44100

4. Plugin(s): Next we need to tell the MHA which plugin(s) to load with the mhalib
variable. As mentioned in the beginning of the section the sine plugin will be used
as an example:

#We want to use the plugin "sine"
mhalib = sine

5. Configuration variables: Each plugin has configuration variables which can be
adjusted accordingly. For each plugin the configuration variables are listed in the
plugin manual
(http://www.openmha.org/docs/openMHA_plugins.pdf#subsection.19.3 for sine plugin).
These variables can be adjusted according to your requirements, such as the frequency
of the sine wave (f), the RMS level (lev) or if the input signal should be added to the
sine wave or replaced completely (mode). An extract from the plugin manual is shown
below in Figure 12.

Figure 12 Extract from Plugin Manual: Configuration variables of the sine plugin

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

http://www.openmha.org/docs/openMHA_plugins.pdf#subsection.19.3

20 CONTENTS

Although the plugin is used by mhalib = sine, the variables of the plugin are changed
by setting mha.<variable_name> = value. This could for example look like:

#Adjust configuration variables
#frequency
mha.f = 440
#RMS Level
mha.lev = 100
#Operating mode (can be changed to replace[default])
mha.mode = mix
#Channels on which the sine plugin should operate
mha.channels=[0]

Here the frequency was adjusted to 440 Hz and the RMS level of the sine tone was
changed to 100 dB. The operating mode was to set to mix, such that the input is mixed
with the sine signal (instead of being replaced). The variable channels was adjusted
to [0]. This means that the sine plugin is only operating on the first channel. In order to
operate on both channels mha.channels = [0 1] can be used.

6. Audio Back-End: openMHA supports different audio back-ends, such as sound drivers,
JACK audio servers, sound files or networks. This can be adjusted by choosing the so
called IO plugin library (iolib). :

For static audio files: e.g. iolib = MHAIOFile
For live JACK signals: iolib = MHAIOJack
In this case we want to work with a static audio file such that we need to choose:

#For live input use 'MHAIOJack'
iolib = MHAIOFile

7. Input (io.in)

For static audio files: io.in = name_of_file.wav
For live JACK signals: io.con_in = [system:capture_1 system:capture_2]
(for two input channels)

#Define the name of the input file
#The input file needs to be in the same directory
#as the .cfg file itself
io.in = 1speaker_diffNoise_2ch.wav

Note: In this case the input file needs to be in the same directory as the .cfg file
itself. If this is not the case the absolute or relative (to the .cfg file) path can be
used, e.g.

• ./../Folder/1speaker_diffNoise_2ch.wav (relative path)

• /home/UserName/Folder/1speaker_diffNoise_2ch.wav (absolute path)

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

8 Writing your own Configuration Script 21

8. Output (io.out)

For static audio files: e.g. io.out = name_of_file_out.wav
For live JACK signals: io.con_out = [system:playback_1 system:playback_2]
(for two output channels)

#Define name of output file
io.out = 1speaker_diffNoise_2ch_OUT.wav

How to run your script:

1. Start openMHA in the same directory as your .cfg file

2. →?read:your_script.cfg

3. Start the openMHA signal processing by:
→ cmd=start

4. In order to exit openMHA type:
→ cmd=quit

© 2005-2021 HörTech gGmbH, Oldenburg, © 2021-2024 Hörzentrum Oldenburg gGmbH

	Introduction
	About this Manual
	Structure
	Platform Services and Conventions

	Requirements
	Required Programs
	Update to Latest Version
	System-Specific Settings

	Getting Started
	Starting openMHA

	Step-by-Step Exercise: Gain Application
	File to File
	Starting openMHA with JACK Input/Output

	Control Frequency Shifter using Octave/Matlab GUI
	Control Dynamic Compression using Octave/Matlab GUI
	Using AC Variables
	Writing your own Configuration Script

