
Open Hardware Multichannel Sound Interface for Hearing Aid
Research on BeagleBone Black with openMHA: Cape4all

Tobias Herzke1,4 and Hendrik Kayser1,2,4 and Christopher Seifert3,4

and Paul Maanen1,4 and Christopher Obbard5 and Guillermo Payá-Vayá3,4

and Holger Blume3,4 and Volker Hohmann1,2,4

1HörTech gGmbH, Marie-Curie-Str. 2, D-26129 Oldenburg, Germany
2Medical Physics, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany

3Institute of Microelectronic Systems, Leibniz Universität, D-30176 Hannover, Germany
4Cluster of Excellence “Hearing4all”
564 Studio Ltd, Isle of Wight, UK

info@openmha.org

Abstract

The paper describes a new multichannel sound inter-
face for the BeagleBone Black, Cape4all. The sound
interface has 6 input channels with optional micro-
phone pre-amplifiers and between 4 and 6 output
channels. The multichannel sound extension cape
for the BeagleBone Black is designed and produced.
An ALSA driver is written for it. It is used with
the openMHA hearing aid research software to per-
form hearing aid signal processing on the Beagle-
Bone Black with a customized Debian distribution
tailored to real-time audio signal processing.

Keywords

Hearing aids, audio signal processing, sound hard-
ware

1 Introduction

Hearing aids are the most common form of mit-
igation for mild and moderate hearing losses.
Hearing aids help the wearer to follow conversa-
tions and acoustic events in different situations.
In the complex acoustic environments that we
encounter in our daily life, information about
the acoustic scene is inferred at higher stages of
the human auditory system and exploited in the
brain for, e.g., speech understanding. A hearing
loss causes — in addition to reduced sensitivity
to soft sounds — a partial loss of this informa-
tion. Effective signal processing algorithms are
required for compensation. For this reason, im-
proving signal processing in hearing aids is an
active research topic.

Part of the work in hearing aid research is
to develop novel signal processing algorithms
that can be used in hearing aids to improve the
hearing experience for hard-of-hearing people.
Usually, simulations are run and evaluated in
terms of objective measures after such an algo-
rithm has been developed mathematically. Re-

sults from simulations do not necessarily reflect
the benefit of the algorithm a) when integrated
in a complete signal processing chain of a hear-
ing aid and b) in a real-world scenario. To assess
the usefulness of new hearing aid algorithms for
hearing-impaired people, new potential hearing
aid signal processing algorithms also have to be
tested with hearing impaired test subjects in re-
alistic situations. Running an algorithm under
test on an end-user hearing device is practically
infeasible as it requires access to a proprietary
system of a hearing aid manufacturer, and a
large effort for the down-to-hardware implemen-
tation is required on such devices. Instead, a
software platform can be used to simulate the
hearing aid processing chain. The open Mas-
ter Hearing Aid (openMHA, [HörTech gGmbH
and Universität Oldenburg, 2017], [Herzke et
al., 2017]) is such a platform. openMHA can
be utilized to conduct field tests of hearing aid
processing methods running on portable hard-
ware.

The following sections first introduce the
software and hardware platforms utilizable to
evaluate hearing aid algorithms with hearing-
impaired test subjects. We work out the need
for a custom multichannel sound interface for a
small, portable computer. The subsequent sec-
tions report on the hardware design process that
resulted in the Cape4all1 BeagleBone sound in-
terface, the sound driver development, and fi-
nally the possible usage of the sound interface
for hearing aid research.

1developed in the cluster of excellence “Hearing4all”



2 Software and Hardware Platform
for Hearing Aid Research

HörTech and the University of Oldenburg have
developed the openMHA [HörTech gGmbH and
Universität Oldenburg, 2017], [Herzke et al.,
2017] software platform for the development
and evaluation of hearing aid algorithms, where
individual hearing aid algorithms can be imple-
mented as plugins and loaded at run-time. The
platform provides a set of standard algorithms
to form a complete hearing aid. It can pro-
cess audio signal in real-time with a low delay
(<10 ms) between sound input and sound out-
put. (The actual delay depends on the sound
hardware used for input and output, configura-
tion options like sampling rate and audio buffer
size, and also on delay introduced by some sig-
nal processing algorithms.)

In its current version 4.5.5, the openMHA
software platform can execute on computers
with Linux and Mac OS operating system, e.g.,
in a laboratory environment. Toolboxes for gen-
erating virtual sound environments in a labora-
tory exist (e.g. TASCAR [Grimm et al., 2015])
but the sound environment in a lab — and even
more the subject behavior in a lab environment
— will always differ from real environments en-
countered by hearing aid users in real life. To
test real-life situations, we have to go outside
and into real situations with hearing-impaired
users wearing a mobile computer that executes
the openMHA and provides the first chance to
test new algorithms in real-world situations. In
the past, we have used laptops for this purpose
but with the advent of small, ARM-based single
board computers like the Raspberry Pi, Beagle-
Bone, and several others these become an op-
tion for executing openMHA that imposes less
weight to carry around for the test subjects.
The processing power of these devices is sig-
nificantly lower than that of PCs and laptops,
which will always limit the extent and setup of
algorithms that can be executed on such a mo-
bile platform (compared to a PC).

openMHA is meant as a common platform to
be used by different hearing aid research labs
to combine their work. By providing a solid
base platform, we want to encourage researchers
to implement and publish their algorithms as
openMHA plugins so that work can be shared
and results can be reproduced by independent
labs.

For this purpose, openMHA includes a tool-
box library that already contains functions and

classes useful to more than one algorithm to
speed up implementation of new algorithms. As
a key to usability of the software in different
usage scenarios openMHA also includes several
manuals for different entry levels ranging from
plugin developments over application engineer-
ing based on available plugins and functionality
to the application of the software in the con-
text of audiological research and hearing aid fit-
ting controlled through a graphical user inter-
face (GUI). Step-by-step tutorials on the imple-
mentation of openMHA plugins as well as ex-
amples of configurations are provided to enable
an autonomous familiarization for new users.

Some hearing aid algorithms — such as direc-
tional microphones — need to process the sound
from more than one microphone per ear which
is why a multichannel sound card is generally
needed to capture the sound from all hearing
aid microphones. Professional sound cards can
be used for this purpose in stationary laboratory
setups. Bus-powered USB sound cards can be
used with laptops in mobile evaluation setups,
but the choice of bus-powered interfaces with
more than 2 input channels is limited. We have
observed that the total delay between input and
output sounds that can be achieved with USB
sound cards is always larger than what can be
achieved with similar sound cards with PCI or
Expresscard interface. This difference in delay
is in the order of 2 ms, which will already affect
some hearing aid algorithms. We have also ob-
served that the delay may vary from one start
of the sound card to the next with USB sound
cards, in the range of 1 ms, which is detrimen-
tal to some processing algorithms such as acous-
tic feedback reduction. (Feedback reduction al-
gorithms are an essential part of a hearing aid
processing chain and need the system to be as
invariant as possible to work effectively.) The
Inter-IC Sound (IIS or I2S) bus — transporting
sound data from the SoC2 to the audio codecs
with the AD/DA converters (and back) — is
accessible on expansion headers on many of the
single-board ARM computers, making it possi-
ble to create custom sound interface hardware.

Third parties already provide multichannel
sound interfaces for popular boards like the Bea-
gleBone Black and the Raspberry Pi. Of these
two devices, the BeagleBone Black has the ad-
vantage of hardware support for multichannel

2Abbreviation for System on a Chip, the combination
of a microprocessor and several peripherals (e.g. graphics
unit, sound interface) on a single chip.



audio input/output. See Section 3.1 for details.
One multichannel sound interface option for

the BeagleBone Black is the BELA cape [Moro
et al., 2016]. It provides stereo in/out and ad-
ditional 8 analogue data acquisition channels.
These additional 8 analogue data acquisition
channels can also be used to capture audio but
do not provide anti-aliasing filters, and achiev-
able sampling rates depend on the number of
channels in simultaneous use. The BELA cape
makes use of real-time hardware present on the
BeagleBone Black. Audio processing algorithms
can be compiled to execute on this real-time
hardware, process the input channel data, and
produce output channel data. Existing Linux
audio processing applications using ALSA3 or
JACK4[Davis, 2003] and common features of
the operating system cannot execute on this
real-time hardware.

Another multichannel audio interface devel-
oped for BeagleBone platforms is the CTAG
face 2|4 [Langer and Manzke, 2015], [Langer,
2015]. Its hardware design is available open-
source from GitHub and drivers have been in-
cluded in official BeagleBoard SD card images.
Providing capabilities for multichannel signal
processing this device is in principle suitable for
hearing aid processing on the BeagleBone Black.
A drawback that remains here is the necessity to
add external power supply for the microphones
connected to the device.

The Octo Audio Injector sound card http:
//www.audioinjector.net/rpi-octo-hat of-
fers 6 input channels and 8 output channels for
the Raspberry Pi. Although the Raspberry Pi
offers no hardware support for more than two
sound channels, this sound card manages to of-
fer enough input channels to connect 2 hear-
ing aids with 3 microphones each. A disadvan-
tage of this sound card for hearing aid research
is that additional external microphone pream-
plifiers are needed to raise the microphone sig-
nals to line level, which adds to the hardware
that test subjects would have to carry around.
An example setup for teaching hearing aid sig-
nal processing [Schädler, 2017], [Schädler et al.,
2018] uses the stereo version of this sound card

3Acronym for Advanced Linux Sound Architecture,
name for a system of Linux kernel sound card drivers
and user space API to exchange sound data with these
drivers.

4 Self-referencing acronym for JACK Audio Connec-
tion Kit, a user-space server application and library to
connect inputs and outputs of audio applications and
sound cards.

Figure 1: Cape4all with two hearing aids (each
containing three microphones) connected.

together with external microphone preampli-
fiers.

3 Development of the Cape4all
Multichannel Sound Interface for
Hearing Aid Research

We have a need for a compact multichannel
sound interface for a single-board ARM com-
puter with integrated microphone pre-amplifiers
for hearing aid research. Since such a multi-
channel sound interface was not available, we
decided to develop such a sound interface our-
selves.

3.1 Choice of ARM Board Basis for a
Multichannel Sound Card

In the ongoing developments of the Cluster of
Excellence ”Hearing4all”5 several audio inter-
faces were developed proving the inter IC sound
(IIS or I2S) in combination with the Analog
Devices ADAU1761 [Analog Devices Inc., 2009]
stereo audio codec useful [Seifert et al., 2015].
To gain multichannel capabilities, a time divi-
sion multiplex (TDM) scheme specified for I2S
is used. The chosen ADAU1761 codecs support
a TDM output scheme. To allow the usage in
combination with an ARM-based platform and
therefore with openMHA, the BeagleBone Black
with native I2S TDM support by the integrated
McASP6 interfaces was chosen.

3.2 Hardware Design

The Cape4all hardware was designed by the
Leibniz University Hannover based on [Seifert

5http://hearing4all.eu/
6Abbreviation for Multichannel Audio Serial Port.

http://www.audioinjector.net/rpi-octo-hat
http://www.audioinjector.net/rpi-octo-hat
http://hearing4all.eu/


et al., 2015].
In addittion to the I2S TDM output capa-

bilities the Analog Devices ADAU1761 audio
codecs have integrated microphone amplifiers.
Up to 3 microphones for each ear on a bilateral
fitting are assumed in the context of hearing
device development. Therefore, 3 stereo audio
codecs are integrated on the Cape4all PCB7 al-
lowing up to 6 input and output channels simul-
taneously. Due to the TDM scheme, only five
signal connections are required to transport and
synchronize all 3 codecs with 6 input and out-
put channels and the McASP interface of the
BeagleBone Black.

The board provides standard stereo jacks for
connecting off-the-shelf sound hardware as well
as pin headers for custom designs. 3 stereo
jacks are mounted on the board for the 6 in-
put channels, and 2 additional stereo jacks for
the first 4 output channels. The remaining out-
put channels are only accessible through the
pin headers. An on-board voltage regulator
provides microphone bias voltage which can be
switched on and off as needed and routed to
different connectors. The bias voltage can be
altered by exchanging on-board resistors. For
more details, see the reference manual pro-
vided with the hardware design files and the
driver as download from https://github.com/
HoerTech-gGmbH/Cape4all. Figure 1 shows
the hardware in use.

3.3 Hardware Tests and Design
Revisions

In the testing process of previously built au-
dio interface boards using the ADAU1761 stereo
audio codecs, it was revealed that the inter-
nal components of the codecs create bus col-
lision. The I2S TDM bus digital output pins of
the codecs do not provide high-resistance state,
driving the signal high or low preventing an-
other codec to put data on the same signal. The
documentation of the codecs did not give any
details helping to avoid the bus collision. In or-
der to avoid this, an OR-gate was added to the
board design to merge the signals of the codecs
to one signal. This solves the problem on volt-
age level but does not prevent timing collision
due to wrong configuration of the codec out-
puts. The correct codec configuration is ensured
by the ALSA driver (see Section 4). In normal
TDM configuration, filling 6 of the available 8
timeslots, all 3 audio codecs are working cor-

7Abbreviation for Printed Circuit Board.

rectly. For further details on I2S TDM signaling
see [Seifert et al., 2013].

3.4 Release as Open Hardware

The hardware design files are released un-
der the Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 Inter-
national License on GitHub https:
//github.com/HoerTech-gGmbH/Cape4all.

4 Driver development

The ALSA sound driver for the Cape4all sound
interface was developed by 64 Studio.

As the Linux kernel already has support for
both the McASP Audio Serial Port [Pandey et
al., 2009] used on the BeagleBone Black and the
ADAU1761 codec [Clausen, 2014] used on the
Cape4all, the development by 64 Studio was to
create a glue-driver explaining to the SoC the
order the codecs are arranged on the Cape4all.
The driver registers the cape as effectively one
PCM device with three mixer sub-devices (cor-
responding to the three physical ADAU1761
codecs), each with their own set of controls in
the ALSA mixer. Also, the driver sets up the
codec’s clock-path, TDM slots and various other
default settings.

As the driver exposes the Cape4all as a regu-
lar ALSA device with three mixer sub-devices,
each with their own ALSA controls, application
software may communicate with these devices
without any modifications.

4.1 Limitations

The McASP used on the BeagleBone Black is
clocked from a 24.576 MHz crystal. This limits
the available sample rates to be a whole divisor
of this clock, for instance 24 kHz or 48 kHz is
acceptable but 22.05 kHz or 44.1 kHz is not.

The ADAU1761 codecs do not directly sup-
port sharing 6 channels between 3 separate
codecs on a TDM bus. As a workaround, the
TDM mode for transferring 8 channels is used,
where 2 channels contain no data. A conse-
quence is that the sound card appears to have 8
channels in ALSA but only the first 6 channels,
corresponding to the physical channels, should
be used.

4.2 Release

The driver code is released as open source soft-
ware under the GNU General Public License,
Version 2 or later, in the same git repository
as the hardware design files on GitHub, https:
//github.com/HoerTech-gGmbH/Cape4all.

https://github.com/HoerTech-gGmbH/Cape4all
https://github.com/HoerTech-gGmbH/Cape4all
https://github.com/HoerTech-gGmbH/Cape4all
https://github.com/HoerTech-gGmbH/Cape4all
https://github.com/HoerTech-gGmbH/Cape4all
https://github.com/HoerTech-gGmbH/Cape4all


5 Usage

As Linux distributions created by SoC devel-
opment board manufacturers are typically not
being suited to audio signal processing and con-
tain a lot of applications that are not useful in
this context, a custom Debian distribution has
been prepared by 64 Studio. E.g. the JACK Au-
dio Server contained in this custom distribution
was built without DBUS support to allow the
system to run without a GUI and the final De-
bian system was tweaked by 64 Studio for basic
real-time performance. An image file contain-
ing this distribution is available for download
together with the hardware design. It contains
just the software needed to run openMHA, has
device-tree and custom Kernel built-in as well
as custom tweaks for increased real-time audio
performance.

These steps are needed to prepare a Beagle-
Bone Black for multichannel signal processing
with openMHA and Cape4all:

• Download and copy image to SD-card

• Download and compile openMHA on the
system

• Set up system for higher audio performance
according to manual provided

• Start JACK Audio Server with settings ac-
cording to the openMHA configuration to
be run

• Read example configuration provided with
openMHA and start processing

The openMHA processes can be accessed at
runtime through a TCP/IP connection. This
connection can be used to read out and change
parameters of the running system. By this
means it is possible to run a GUI on a laptop or
tablet computer that can be used to control the
processing parameters remotely. For details, re-
fer to the openMHA application manual.

6 Conclusions

Cape4all is a working, multichannel sound in-
terface for the BeagleBone Black with inte-
grated microphone pre-amplifiers which makes
it suitable for hearing aid research, where pre-
amplifiers are essential and where a small form
factor matters.

A working ALSA driver has been developed
that takes care of the proper initialization of
the codecs and the multichannel capabilities of

the BeagleBone Black and then drives the mul-
tichannel sound exchange between user space
applications and the codecs on the sound inter-
face.

Both, the hardware design files and the
driver, have been published with open licenses
on GitHub, https://github.com/HoerTech-
gGmbH/Cape4all.

In its current state, the Cape4all can be run
together with a JACK Audio Server on a Bea-
gleBone Black reliably with a 4 ms buffer (128
samples per channel) at a 32 kHz sampling rate.
This is the state directly after driver develop-
ment before any optimization towards shorter
audio buffers has been performed. This current
state is an important step towards our goal of a
mobile hearing aid algorithm evaluation setup,
but it needs to be improved to achieve the tar-
get overall audio delay below 10 ms between in-
put and output sounds, considering that some
of the algorithms will add a small algorithmic
delay. Therefore, we are going to further opti-
mize the driver in collaboration with 64 Studio
after the initial release to enable smaller audio
buffer sizes.

7 Acknowledgements

This work was supported by the German Re-
search Foundation (DFG) Cluster of Excellence
EXC 1077/1 ”Hearing4all”.

Research reported in this publication was
supported by the National Institute On Deaf-
ness And Other Communication Disorders of
the National Institutes of Health under Award
Numbers R01DC015429. The content is solely
the responsibility of the authors and does not
necessarily represent the official views of the Na-
tional Institutes of Health.

References

Analog Devices Inc. 2009. ADAU1761 –
SigmaDSP stereo, low power, 96 khz, 24-bit
audio codec with integrated PLL. http:
//www.analog.com/static/imported-
files/data_sheets/ADAU1761.pdf.

Lars-Peter Clausen. 2014. https:
//git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/
sound/soc/codecs/adau17x1.c.

Paul Davis. 2003. Jack audio connection kit.
http://jackaudio.org/.

Giso Grimm, Joanna Luberadzka, Tobias
Herzke, and Volker Hohmann. 2015. Tool-

https://github.com/HoerTech-gGmbH/Cape4all
https://github.com/HoerTech-gGmbH/Cape4all
http://www.analog.com/static/imported-files/data_sheets/ADAU1761.pdf
http://www.analog.com/static/imported-files/data_sheets/ADAU1761.pdf
http://www.analog.com/static/imported-files/data_sheets/ADAU1761.pdf
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/sound/soc/codecs/adau17x1.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/sound/soc/codecs/adau17x1.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/sound/soc/codecs/adau17x1.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/sound/soc/codecs/adau17x1.c


box for acoustic scene creation and rendering
(TASCAR) – render methods and research
applications. In Proceedings of the Linux Au-
dio Conference, pages 1–7, Mainz. Johannes
Gutenberg-Universität.

Tobias Herzke, Hendrik Kayser, Frasher
Loshaj, Giso Grimm, and Volker Hohmann.
2017. Open signal processing software plat-
form for hearing aid research (openMHA). In
Proceedings of the Linux Audio Conference,
pages 35–42, Saint-Étienne. Université Jean
Monnet.

HörTech gGmbH and Universität Oldenburg.
2017. openMHA web site on GitHub. http:
//www.openmha.org/.

Henrik Langer and Robert Manzke. 2015.
Linux-based low-latency multichannel
audio system (CTAG face2—4). http:
//www.creative-technologies.de/linux-
based-low-latency-multichannel-
audio-system-2/.

Henrik Langer. 2015. Linuxbasiertes
Mehrkanal-Audiosystem mit niedriger
Latenz.

Giulio Moro, Astrid Bin, Robert H Jack,
Christian Heinrichs, Andrew P McPherson,
et al. 2016. Making high-performance embed-
ded instruments with bela and pure data.

Nirmal Pandey, Suresh Rajashekara,
and Steve Chen. 2009. https:
//git.kernel.org/pub/scm/linux/
kernel/git/torvalds/linux.git/tree/
sound/soc/davinci/davinci-mcasp.c.

Marc René Schädler, Hendrik Kayser, and
Tobias Herzke. 2018. Pi hearing aid. The
MagPi (Raspberry Pi Magazine), 67:34–35.

Marc René Schädler. 2017. openMHA on
Raspberry Pi. https://github.com/m-r-s/
hearingaid-prototype.

Christopher Seifert, Guillermo Payá-Vayá,
and Holger Blume. 2013. A multi-channel au-
dio extension board for binaural hearing aid
systems. In Proceedings of ICT. OPEN. Con-
ference ICT. OPEN, pages 33–37.

Christopher Seifert, Guillermo Payá-Vayá,
Holger Blume, Tobias Herzke, and Volker
Hohmann. 2015. A mobile SoC-based plat-
form for evaluating hearing aid algorithms
and architectures. In Consumer Electronics-
Berlin (ICCE-Berlin), 2015 IEEE 5th Inter-
national Conference on, pages 93–97. IEEE.

http://www.openmha.org/
http://www.openmha.org/
http://www.creative-technologies.de/linux-based-low-latency-multichannel-audio-system-2/
http://www.creative-technologies.de/linux-based-low-latency-multichannel-audio-system-2/
http://www.creative-technologies.de/linux-based-low-latency-multichannel-audio-system-2/
http://www.creative-technologies.de/linux-based-low-latency-multichannel-audio-system-2/
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/sound/soc/davinci/davinci-mcasp.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/sound/soc/davinci/davinci-mcasp.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/sound/soc/davinci/davinci-mcasp.c
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/sound/soc/davinci/davinci-mcasp.c
https://github.com/m-r-s/hearingaid-prototype
https://github.com/m-r-s/hearingaid-prototype

	Introduction
	Software and Hardware Platform for Hearing Aid Research
	Development of the Cape4all Multichannel Sound Interface for Hearing Aid Research
	Choice of ARM Board Basis for a Multichannel Sound Card
	Hardware Design
	Hardware Tests and Design Revisions
	Release as Open Hardware

	Driver development
	Limitations
	Release

	Usage
	Conclusions
	Acknowledgements

